Dielectric and Ferroelectric Behavior of La-Doped Bi4Ti3O12 Prepared by Mechanical Alloying

材料科学 铁电性 电介质 兴奋剂 工程物理 复合材料 光电子学 工程类
作者
Sumit Bhardwaj,Rajni Sharma,Aayush Gupta,Sachin Jaidka,Mir Waqas Alam,Mirgender Kumar
出处
期刊:ECS Journal of Solid State Science and Technology [The Electrochemical Society]
卷期号:14 (9): 093005-093005
标识
DOI:10.1149/2162-8777/ae0367
摘要

Lanthanum-doped bismuth titanate (BLT) was synthesized via high-energy ball milling to improve its dielectric and ferroelectric properties. Structural analysis using X-ray diffraction confirmed the successful incorporation of La 3+ into the Bi 4 Ti 3 O 12 lattice, resulting in reduced crystallite size (BIT 15.28 nm and BLT 16.02 nm ) and enhanced lattice distortion. Scanning electron microscopy revealed particle sizes of approximately 11–12 nm, while TEM confirmed nanoscale crystallinity with less than 20 nm particle dimensions. Raman spectroscopy further validated structural modifications, including TiO 6 octahedral distortions induced by La substitution. The dielectric performance showed a significant increase in the dielectric constant from 142 (BIT) to 176.3 (BLT) at 100 Hz, alongside reduced dielectric loss (BIT 1.89, BLT 2.18), attributed to enhanced space-charge polarization at grain boundaries. Ferroelectric hysteresis loops demonstrated improved remnant polarization, increasing from 5.19 μC cm −2 (BIT) to 6.94 μC cm −2 (BLT), while retaining a low coercive field. The study highlights the potential of La-doped Bi 4 Ti 3 O 12 as an efficient dielectric and ferroelectric material for high-performance applications in non-volatile memory devices and high-temperature capacitors. Quantitative results validate the effectiveness of mechanical alloying as a cost-efficient and scalable synthesis route, offering a platform for future optimization of dopant concentrations and processing conditions to maximize material performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿白发布了新的文献求助10
2秒前
莫问我发布了新的文献求助10
3秒前
3秒前
Smile完成签到,获得积分10
4秒前
万能图书馆应助suhua采纳,获得10
4秒前
5秒前
5秒前
6秒前
6秒前
6秒前
LewisAcid应助科研通管家采纳,获得20
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
7秒前
852应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
浮游应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
紫菀应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
8秒前
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
8秒前
大模型应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
TY完成签到,获得积分10
10秒前
HJJHJH发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642354
求助须知:如何正确求助?哪些是违规求助? 4758746
关于积分的说明 15017371
捐赠科研通 4801005
什么是DOI,文献DOI怎么找? 2566290
邀请新用户注册赠送积分活动 1524440
关于科研通互助平台的介绍 1483953