Phenotypic age acceleration as a novel predictor of benign prostatic hyperplasia: a prospective cohort study

医学 队列 逻辑回归 生物标志物 全国健康与营养检查调查 表型 内科学 肿瘤科 生物 人口 遗传学 环境卫生 基因
作者
Xuwen Li,Penghu Lian,Hongyan Chen,Liangzhe Zhang,Zhe Zhang,Yao Zhang,Nianzeng Xing,Tao Jiang,Ziwei Chen,Xinlei Zhang,Xiongjun Ye
出处
期刊:GeroScience [Springer Nature]
标识
DOI:10.1007/s11357-025-01846-9
摘要

This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers. PhenoAgeAccel, representing biological aging acceleration, was calculated as the residual from regressing phenotypic age on chronological age. Recursive Feature Elimination (RFE) identified 34 BPH-associated features, which were integrated into an XGBoost prediction model. Logistic regression evaluated PhenoAgeAccel-BPH associations, while SHapley Additive exPlanations (SHAP) quantified feature contributions to enhance model interpretability. The XGBoost model achieved an area under the curve (AUC) of 0.833 in the test set. Phenotypic age was strongly correlated with chronological age (r = 0.833), and individuals with PhenoAgeAccel exhibited a significantly elevated risk of BPH (p < 0.001). Adjusting the model with phenotypic age improved predictive performance (AUC = 0.853). SHAP analysis identified phenotypic age as the third most influential predictor (after trailing cancer history and lead exposure), highlighting its clinical relevance. Chronological age and serum biomarkers are critical predictors of BPH, while PhenoAgeAccel independently contributes to risk stratification. Integrating phenotypic age with machine learning provides a robust framework for the early detection of BPH and personalized risk assessment, aligning with advancements in aging biomarker research. This approach supports targeted interventions to mitigate BPH progression in aging populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助风趣问蕊采纳,获得10
刚刚
1秒前
愉快竺发布了新的文献求助10
1秒前
丘比特应助xing采纳,获得10
3秒前
4秒前
hasakey发布了新的文献求助10
4秒前
4秒前
落叶解三秋完成签到,获得积分10
4秒前
4秒前
11111发布了新的文献求助10
5秒前
ls完成签到 ,获得积分10
6秒前
6秒前
6秒前
叮叮当当发布了新的文献求助10
7秒前
java完成签到,获得积分10
8秒前
林子发布了新的文献求助30
8秒前
9秒前
9秒前
sci大佬完成签到,获得积分10
9秒前
美满夕阳完成签到,获得积分10
10秒前
小杭76应助wwwww采纳,获得10
10秒前
风信子发布了新的文献求助10
11秒前
LooYen发布了新的文献求助10
12秒前
wzx199711发布了新的文献求助10
12秒前
HEIKU发布了新的文献求助50
13秒前
13秒前
13秒前
14秒前
14秒前
搜集达人应助调皮摇伽采纳,获得10
14秒前
15秒前
fxx发布了新的文献求助10
16秒前
谢a发布了新的文献求助10
17秒前
18秒前
小蘑菇应助badbenzene采纳,获得10
18秒前
潘果果完成签到,获得积分10
18秒前
19秒前
大模型应助张瑞宁采纳,获得10
19秒前
细腻初雪发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5310303
求助须知:如何正确求助?哪些是违规求助? 4454590
关于积分的说明 13860760
捐赠科研通 4342696
什么是DOI,文献DOI怎么找? 2384719
邀请新用户注册赠送积分活动 1379174
关于科研通互助平台的介绍 1347478