亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

3D fractal dimension analysis of CT imaging for microvascular invasion prediction in hepatocellular carcinoma

神经组阅片室 肝细胞癌 医学 介入放射学 放射科 逻辑回归 超声波 分形维数 回顾性队列研究 核医学 计算机断层摄影术 总体生存率 生存分析 临床实习 医学影像学 试验预测值 诊断准确性 内科学
作者
Feng Che,Qian Li,Wei Ren,Hehan Tang,Guli Zaina,Shan Yao,Ning Zhang,Shaocheng Zhu,Bin Song,Yi Wei
出处
期刊:European Radiology [Springer Nature]
标识
DOI:10.1007/s00330-025-11878-6
摘要

Abstract Objectives This study aimed to assess the potential role of 3-dimensional (3D) fractal dimension (FD) derived from contrast-enhanced CT images in predicting microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC). Materials and methods This retrospective study included 655 patients with surgically confirmed HCC from two medical centers (training set: 406 patients; internal test set: 170 patients; external test set: 79 patients). Box-counting algorithms were used to compute 3D FD values from portal venous phase images. Univariable and multivariable logistic regression analyses identified independent predictors. The model’s area under the curve (AUC) was calculated. Recurrence-free survival (RFS) and overall survival (OS) were evaluated using the Kaplan–Meier method. Results Patients with MVI-positive HCC demonstrated significantly higher FD values compared to those with MVI-negative HCC ( p < 0.01). The FD achieved AUCs of 0.786 (95% CI: 0.713–0.849) in the internal test set and 0.776 (95% CI: 0.669–0.874) in the external test set. A combined model incorporating alpha-fetoprotein, tumor size, tumor number, and FD showed superior diagnostic performance for MVI prediction compared to the clinical model, with AUCs of 0.795 (95% CI: 0.720–0.860) vs 0.752 (95% CI: 0.670–0.825) in the internal test set, and 0.826 (95% CI: 0.721–0.915) vs 0.739 (95% CI: 0.613–0.849) in the external test set. Patients stratified as high-risk MVI exhibited significantly worse RFS and OS outcomes compared to low-risk MVI patients ( p < 0.05). Conclusion The 3D FD values differed significantly between MVI-positive and MVI-negative HCC patients. Integrating FD into the clinical model enhanced MVI prediction accuracy and may help identify patients at high risk. Key Points Question The predictive value of three-dimensional (3D) fractal dimension (FD) derived from contrast-enhanced CT images for identifying MVI-positive HCC remains unclear. Findings Quantitative indicators derived from fractal analysis were able to predict MVI. The developed model demonstrated improved performance when incorporating fractal dimension. Clinical relevance Fractal analysis based on contrast-enhanced CT is a feasible approach for evaluating MVI and provides additional clinical value for prognostic assessment. It may serve as a reference for preoperative MVI estimation and assist clinicians in executing more tailored therapies. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
26秒前
半城烟火完成签到 ,获得积分10
33秒前
43秒前
48秒前
54秒前
54秒前
1分钟前
高贵的沉鱼完成签到 ,获得积分10
1分钟前
珍珠火龙果完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Hello应助sjj采纳,获得20
1分钟前
Criminology34应助科研通管家采纳,获得20
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得20
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
sjj发布了新的文献求助20
1分钟前
ttimmy发布了新的文献求助30
1分钟前
王彦霖完成签到 ,获得积分10
2分钟前
2分钟前
sjj完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
jiang完成签到,获得积分20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739561
求助须知:如何正确求助?哪些是违规求助? 5387511
关于积分的说明 15339800
捐赠科研通 4882032
什么是DOI,文献DOI怎么找? 2624106
邀请新用户注册赠送积分活动 1572804
关于科研通互助平台的介绍 1529599