3D fractal dimension analysis of CT imaging for microvascular invasion prediction in hepatocellular carcinoma

神经组阅片室 肝细胞癌 医学 介入放射学 放射科 超声波 分形维数 分形分析 病理 分形 内科学 神经学 数学分析 数学 精神科
作者
Feng Che,Qian Li,Wei Ren,Hehan Tang,Guli Zaina,Shan Yao,Ning Zhang,Shaocheng Zhu,Bin Song,Yi Wei
出处
期刊:European Radiology [Springer Science+Business Media]
标识
DOI:10.1007/s00330-025-11878-6
摘要

This study aimed to assess the potential role of 3-dimensional (3D) fractal dimension (FD) derived from contrast-enhanced CT images in predicting microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC). This retrospective study included 655 patients with surgically confirmed HCC from two medical centers (training set: 406 patients; internal test set: 170 patients; external test set: 79 patients). Box-counting algorithms were used to compute 3D FD values from portal venous phase images. Univariable and multivariable logistic regression analyses identified independent predictors. The model's area under the curve (AUC) was calculated. Recurrence-free survival (RFS) and overall survival (OS) were evaluated using the Kaplan-Meier method. Patients with MVI-positive HCC demonstrated significantly higher FD values compared to those with MVI-negative HCC (p < 0.01). The FD achieved AUCs of 0.786 (95% CI: 0.713-0.849) in the internal test set and 0.776 (95% CI: 0.669-0.874) in the external test set. A combined model incorporating alpha-fetoprotein, tumor size, tumor number, and FD showed superior diagnostic performance for MVI prediction compared to the clinical model, with AUCs of 0.795 (95% CI: 0.720-0.860) vs 0.752 (95% CI: 0.670-0.825) in the internal test set, and 0.826 (95% CI: 0.721-0.915) vs 0.739 (95% CI: 0.613-0.849) in the external test set. Patients stratified as high-risk MVI exhibited significantly worse RFS and OS outcomes compared to low-risk MVI patients (p < 0.05). The 3D FD values differed significantly between MVI-positive and MVI-negative HCC patients. Integrating FD into the clinical model enhanced MVI prediction accuracy and may help identify patients at high risk. Question The predictive value of three-dimensional (3D) fractal dimension (FD) derived from contrast-enhanced CT images for identifying MVI-positive HCC remains unclear. Findings Quantitative indicators derived from fractal analysis were able to predict MVI. The developed model demonstrated improved performance when incorporating fractal dimension. Clinical relevance Fractal analysis based on contrast-enhanced CT is a feasible approach for evaluating MVI and provides additional clinical value for prognostic assessment. It may serve as a reference for preoperative MVI estimation and assist clinicians in executing more tailored therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jijun完成签到,获得积分10
刚刚
清脆安南发布了新的文献求助10
1秒前
何以载道发布了新的文献求助10
2秒前
wsy完成签到,获得积分10
3秒前
4秒前
害羞煎蛋完成签到,获得积分20
4秒前
5秒前
yhbk完成签到 ,获得积分10
5秒前
俊逸依丝发布了新的文献求助10
10秒前
yyyf发布了新的文献求助10
12秒前
14秒前
14秒前
lin3good应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
hh应助科研通管家采纳,获得30
15秒前
15秒前
sqzr123完成签到,获得积分10
16秒前
16秒前
yyy发布了新的文献求助10
17秒前
Frank发布了新的文献求助10
19秒前
22秒前
24秒前
24秒前
25秒前
25秒前
嘎嘎嘎完成签到,获得积分10
27秒前
29秒前
29秒前
Orange应助追忆淮采纳,获得10
29秒前
29秒前
30秒前
天玄一刀发布了新的文献求助10
30秒前
嘎嘎嘎发布了新的文献求助10
30秒前
亚鹏完成签到,获得积分10
32秒前
34秒前
共享精神应助奋斗瑶采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4792691
求助须知:如何正确求助?哪些是违规求助? 4115166
关于积分的说明 12730598
捐赠科研通 3843076
什么是DOI,文献DOI怎么找? 2118357
邀请新用户注册赠送积分活动 1140580
关于科研通互助平台的介绍 1028848