Classification of lung cancer subtypes on CT images with synthetic pathological priors

先验概率 肺癌 人工智能 病态的 模式识别(心理学) 计算机断层摄影术 医学 数学 计算机科学 放射科 病理 贝叶斯概率
作者
Wentao Zhu,Yuan Jin,Gege Ma,Geng Chen,Jan Egger,Shaoting Zhang,Dimitris Metaxas
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:95: 103199-103199 被引量:8
标识
DOI:10.1016/j.media.2024.103199
摘要

The accurate diagnosis on pathological subtypes for lung cancer is of significant importance for the follow-up treatments and prognosis managements. In this paper, we propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on computed tomography (CT) images. Inspired by studies stating that cross-scale associations exist in the image patterns between the same case's CT images and its pathological images, we innovatively developed a pathological feature synthetic module (PFSM), which quantitatively maps cross-modality associations through deep neural networks, to derive the "gold standard" information contained in the corresponding pathological images from CT images. Additionally, we designed a radiological feature extraction module (RFEM) to directly acquire CT image information and integrated it with the pathological priors under an effective feature fusion framework, enabling the entire classification model to generate more indicative and specific pathologically related features and eventually output more accurate predictions. The superiority of the proposed model lies in its ability to self-generate hybrid features that contain multi-modality image information based on a single-modality input. To evaluate the effectiveness, adaptability, and generalization ability of our model, we performed extensive experiments on a large-scale multi-center dataset (i.e., 829 cases from three hospitals) to compare our model and a series of state-of-the-art (SOTA) classification models. The experimental results demonstrated the superiority of our model for lung cancer subtypes classification with significant accuracy improvements in terms of accuracy (ACC), area under the curve (AUC), positive predictive value (PPV) and F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独孤骄子完成签到 ,获得积分0
刚刚
Akim应助小歪同学采纳,获得10
刚刚
健壮的以莲完成签到,获得积分10
1秒前
英姑应助乖猫要努力采纳,获得10
1秒前
BLDC888完成签到,获得积分10
1秒前
hopen发布了新的文献求助10
1秒前
wang1030完成签到,获得积分10
1秒前
Hello应助Tong采纳,获得10
2秒前
2秒前
3秒前
4秒前
55发布了新的文献求助10
4秒前
xushuangwei发布了新的文献求助10
4秒前
深情安青应助bubble采纳,获得10
4秒前
酷波er应助yansie采纳,获得10
5秒前
kaka发布了新的文献求助30
5秒前
卷卷完成签到,获得积分10
6秒前
Carbonzinc完成签到,获得积分10
6秒前
淡然盈完成签到,获得积分10
8秒前
8秒前
8秒前
fff发布了新的文献求助10
8秒前
8秒前
8秒前
烟花应助wxd采纳,获得10
9秒前
加油完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
孤傲的静脉完成签到,获得积分10
10秒前
领导范儿应助清秀凌蝶采纳,获得10
10秒前
科研通AI6应助dd采纳,获得10
11秒前
11秒前
老豆完成签到,获得积分20
11秒前
11秒前
科研通AI6应助nana采纳,获得10
12秒前
12秒前
13秒前
香蕉觅云应助如意的秋凌采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4580110
求助须知:如何正确求助?哪些是违规求助? 3998280
关于积分的说明 12378387
捐赠科研通 3672683
什么是DOI,文献DOI怎么找? 2024040
邀请新用户注册赠送积分活动 1058143
科研通“疑难数据库(出版商)”最低求助积分说明 944885