Gene selection based on recursive spider wasp optimizer guided by marine predators algorithm

算法 初始化 计算机科学 滤波器(信号处理) 选择(遗传算法) 特征选择 启发式 人工智能 模式识别(心理学) 计算机视觉 程序设计语言
作者
Sarah Osama,Abdelmgeid A. Ali,Hassan Shaban
出处
期刊:Neural Computing and Applications [Springer Science+Business Media]
被引量:2
标识
DOI:10.1007/s00521-024-09965-8
摘要

Abstract Detecting tumors using gene analysis in microarray data is a critical area of research in artificial intelligence and bioinformatics. However, due to the large number of genes compared to observations, feature selection is a central process in microarray analysis. While various gene selection methods have been developed to select the most relevant genes, these methods’ efficiency and reliability can be improved. This paper proposes a new two-phase gene selection method that combines the ReliefF filter method with a novel version of the spider wasp optimizer (SWO) called RSWO-MPA. In the first phase, the ReliefF filter method is utilized to reduce the number of genes to a reasonable number. In the second phase, RSWO-MPA applies a recursive spider wasp optimizer guided by the marine predators algorithm (MPA) to select the most informative genes from the previously selected ones. The MPA is used in the initialization step of recursive SWO to narrow down the search space to the most relevant and accurate genes. The proposed RSWO-MPA has been implemented and validated through extensive experimentation using eight microarray gene expression datasets. The enhanced RSWO-MPA is compared with seven widely used and recently developed meta-heuristic algorithms, including Kepler optimization algorithm (KOA), marine predators algorithm (MPA), social ski-driver optimization (SSD), whale optimization algorithm (WOA), Harris hawks optimization (HHO), artificial bee colony (ABC) algorithm, and original SWO. The experimental results demonstrate that the developed method yields the highest accuracy, selects fewer features, and exhibits more stability than other compared algorithms and cutting-edge methods for all the datasets used. Specifically, it achieved an accuracy of 100.00%, 94.51%, 98.13%, 95.63%, 100.00%, 100.00%, 92.97%, and 100.00% for Yeoh, West, Chiaretti, Burcyznski, leukemia, ovarian cancer, central nervous system, and SRBCT datasets, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助Hiker采纳,获得10
2秒前
3秒前
3秒前
4秒前
kay发布了新的文献求助10
4秒前
JerryZ发布了新的文献求助10
5秒前
旧辞发布了新的文献求助10
5秒前
上官若男应助和谐的梦蕊采纳,获得10
6秒前
yyytr完成签到,获得积分10
6秒前
7秒前
烟花应助吴谷杂粮采纳,获得10
7秒前
lilyliu发布了新的文献求助10
8秒前
jhb发布了新的文献求助10
8秒前
8秒前
善学以致用应助kitty采纳,获得10
9秒前
上官若男应助不安乐菱采纳,获得30
9秒前
10秒前
007发布了新的文献求助10
11秒前
田様应助超帅凡阳采纳,获得10
11秒前
12秒前
葛藟萦藤发布了新的文献求助10
13秒前
狂野砖头发布了新的文献求助10
13秒前
lilyliu完成签到,获得积分10
15秒前
祁祁发布了新的文献求助30
16秒前
cv完成签到,获得积分20
16秒前
16秒前
齐嘉懿发布了新的文献求助10
16秒前
哈哈哈发布了新的文献求助10
17秒前
17秒前
十二完成签到,获得积分10
17秒前
18秒前
18秒前
受伤的小松鼠完成签到,获得积分10
19秒前
joey完成签到,获得积分10
19秒前
Hugo完成签到,获得积分10
20秒前
CodeCraft应助丁真先生采纳,获得10
21秒前
吴谷杂粮发布了新的文献求助10
21秒前
22秒前
不安乐菱发布了新的文献求助30
22秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790999
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276539
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675079
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761056