Mapping mangrove functional traits from Sentinel-2 imagery based on hybrid models coupled with active learning strategies

红树林 地理 地图学 遥感 生态学 生物
作者
Mingming Jia,Xianxian Guo,Lin Zhang,Mao Wang,Wenqing Wang,Chunyan Lu,Chuanpeng Zhao,Rong Zhang,Ming Wang,Hengqi Yan,Zongming Wang,Jochem Verrelst
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:130: 103905-103905 被引量:4
标识
DOI:10.1016/j.jag.2024.103905
摘要

Accurately quantifying functional traits across large scales is considered fundamental for the management and conservation of existing mangrove ecosystems. In recent years, hybrid models, which combine radiative transfer model simulations with machine learning regression algorithms (MLRA), have been effectively employed in satellite-based estimations of plant functional traits across diverse ecosystems. Nevertheless, the inevitable data redundancy stemming from heavy-parameterization radiative transfer models restricts the application of the hybrid model. Previous studies have indicated that active learning (AL) strategies can mitigate this redundancy through smart sampling selection criteria. While many studies have attempted to investigate mangrove functional traits using various models, there is limited understanding of the performance of hybrid models coupled with active learning strategies in retrieving the traits. In recent years, Sentinel-2 has become mainstream for retrieving detailed and reliable information across diverse ecosystems. The aim of this study is to utilize a retrieval scheme to extract four mangrove functional traits from Sentinel-2 imagery: leaf area index (LAI), leaf chlorophyll content (Cab), leaf dry matter content (Cm), and leaf equivalent water thickness (Cw). In order to achieve this goal, we systematically evaluated 36 different MLRA-AL models, which were combinations of six MLRAs and six AL strategies. Retrieval results showed that GPR (Gaussian processes regression)-ABD (angle-based diversity) and GPR-PAL (variance-based pool of regressors) yielded the highest accuracies for LAI (R2 = 0.68, NRMSE = 10.488 %) and Cw (R2 = 0.47, NRMSE = 13.868 %), respectively. GPR-EBD (Euclidean distance-based diversity) had the highest accuracies of Cm (R2 = 0.54, NRMSE = 11.695 %) and Cab (R2 = 0.71, NRMSE = 13.764 %). The retrieval models were subsequently applied to produce distribution pattern maps of four mangrove functional traits within a Ramsar site. This study represents the first attempt to utilize AL strategies to enhance the efficiency of traditional hybrid models and map multiple functional traits of mangrove forests. The retrieval scheme and mapping results could significantly contribute to the management of mangrove ecosystems and provide a fundamental data source for future research on the ecological services of mangroves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒大王发布了新的文献求助10
刚刚
牛马完成签到 ,获得积分10
1秒前
爱吃酸菜鱼完成签到,获得积分10
1秒前
2秒前
miraitowa发布了新的文献求助20
2秒前
安静的瑾瑜完成签到 ,获得积分10
3秒前
yvye发布了新的文献求助10
5秒前
完美世界应助文静的慕梅采纳,获得10
6秒前
Shiiiyu关注了科研通微信公众号
6秒前
wanci应助ff采纳,获得10
7秒前
Jeisher完成签到,获得积分10
8秒前
CodeCraft应助gege采纳,获得30
9秒前
赘婿应助nissy采纳,获得10
9秒前
豆豆完成签到,获得积分10
10秒前
vict发布了新的文献求助10
10秒前
11秒前
JUST完成签到,获得积分10
11秒前
Joon完成签到,获得积分20
12秒前
Yzz完成签到,获得积分10
13秒前
小次之山发布了新的文献求助20
14秒前
14秒前
xiewenxin发布了新的文献求助30
15秒前
英俊的铭应助追寻芮采纳,获得30
17秒前
科研通AI2S应助哟嚛采纳,获得10
17秒前
HongMou完成签到 ,获得积分10
18秒前
田様应助温乘云采纳,获得10
19秒前
小蘑菇应助Yan采纳,获得10
19秒前
19秒前
大熊发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
21秒前
合适一斩完成签到,获得积分10
21秒前
黎乐荷发布了新的文献求助10
23秒前
ff发布了新的文献求助10
23秒前
nissy发布了新的文献求助10
24秒前
清秀的碧彤完成签到,获得积分10
24秒前
25秒前
张雨璇发布了新的文献求助10
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
求polyinfo中的所有数据,主要要共聚物的,有偿。 1500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
Mechanics of Composite Strengthening 500
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4175437
求助须知:如何正确求助?哪些是违规求助? 3710699
关于积分的说明 11702866
捐赠科研通 3393897
什么是DOI,文献DOI怎么找? 1862205
邀请新用户注册赠送积分活动 921025
科研通“疑难数据库(出版商)”最低求助积分说明 832962