Scalable Bayesian Physics-Informed Kolmogorov-Arnold Networks

贝叶斯概率 可扩展性 物理 统计物理学 贝叶斯网络 人工智能 计算机科学 数据库
作者
Zhiwei Gao,George Em Karniadakis
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2501.08501
摘要

Uncertainty quantification (UQ) plays a pivotal role in scientific machine learning, especially when surrogate models are used to approximate complex systems. Although multilayer perceptions (MLPs) are commonly employed as surrogates, they often suffer from overfitting due to their large number of parameters. Kolmogorov-Arnold networks (KANs) offer an alternative solution with fewer parameters. However, gradient-based inference methods, such as Hamiltonian Monte Carlo (HMC), may result in computational inefficiency when applied to KANs, especially for large-scale datasets, due to the high cost of back-propagation.To address these challenges, we propose a novel approach, combining the dropout Tikhonov ensemble Kalman inversion (DTEKI) with Chebyshev KANs. This gradient-free method effectively mitigates overfitting and enhances numerical stability. Additionally, we incorporate the active subspace method to reduce the parameter-space dimensionality, allowing us to improve the accuracy of predictions and obtain more reliable uncertainty estimates.Extensive experiments demonstrate the efficacy of our approach in various test cases, including scenarios with large datasets and high noise levels. Our results show that the new method achieves comparable or better accuracy, much higher efficiency as well as stability compared to HMC, in addition to scalability. Moreover, by leveraging the low-dimensional parameter subspace, our method preserves prediction accuracy while substantially reducing further the computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助tianmafei采纳,获得10
3秒前
3秒前
Owen应助Pony采纳,获得10
3秒前
4秒前
Allfine完成签到,获得积分10
5秒前
文文发布了新的文献求助10
5秒前
研友_VZG7GZ应助冯冯采纳,获得10
5秒前
优美的觅珍完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
慧慧发布了新的文献求助10
7秒前
8秒前
呆萌芙蓉发布了新的文献求助10
9秒前
9秒前
充电宝应助Allfine采纳,获得10
10秒前
赘婿应助gyh采纳,获得10
10秒前
ChangShengtzu完成签到 ,获得积分10
10秒前
王泽发布了新的文献求助10
11秒前
小曲同学完成签到,获得积分10
11秒前
Clara应助歪比巴卜采纳,获得40
11秒前
LgalaxyW完成签到,获得积分10
12秒前
secret完成签到,获得积分20
12秒前
暮色发布了新的文献求助30
13秒前
上官老师发布了新的文献求助10
14秒前
烟酒生完成签到,获得积分10
14秒前
working完成签到,获得积分10
14秒前
takumii完成签到,获得积分10
14秒前
文文完成签到,获得积分10
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
wanci应助六六采纳,获得10
18秒前
U87完成签到,获得积分10
18秒前
思源应助sunhealth采纳,获得20
19秒前
科研通AI6应助九转科研蛊采纳,获得10
19秒前
19秒前
棺姬发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484315
求助须知:如何正确求助?哪些是违规求助? 4584584
关于积分的说明 14398801
捐赠科研通 4514705
什么是DOI,文献DOI怎么找? 2474090
邀请新用户注册赠送积分活动 1460005
关于科研通互助平台的介绍 1433421