Multi-omics analysis reveals the sensitivity of immunotherapy for unresectable non-small cell lung cancer

肺癌 组学 免疫疗法 灵敏度(控制系统) 医学 癌症免疫疗法 癌症研究 癌症 肿瘤科 计算生物学 生物信息学 内科学 生物 工程类 电子工程
作者
Rui Wu,K. Wei,Xingshuai Huang,Yinge Zhou,Xiao Feng,Xin Dong,Hao Tang
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:16: 1479550-1479550 被引量:2
标识
DOI:10.3389/fimmu.2025.1479550
摘要

Background To construct a prediction model consisting of metabolites and proteins in peripheral blood plasma to predict whether patients with unresectable stage III and IV non-small cell lung cancer can benefit from immunotherapy before it is administered. Methods Peripheral blood plasma was collected from unresectable stage III and IV non-small cell lung cancer patients who were negative for driver mutations before receiving immunotherapy. Then we classified samples according to the follow-up results after two courses of immunotherapy and non-targeted metabolomics and proteomics analyses were performed to select different metabolites and proteins. Finally, potential biomarkers were picked out by applying machine learning methods including random forest and stepwise regression and prediction models were constructed by logistic regression. Results The presence of metabolites and proteins in peripheral blood plasma was causally associated with both non-small cell lung cancer and PD-L1/PD-1 expression levels. A total of 2 differential metabolites including 5-sulfooxymethylfurfural and Anthranilic acid and 2 differential proteins including Immunoglobulin heavy variable 1-45 and Microfibril-associated glycoprotein 4 were selected as reliable biomarkers. The area under the curve (AUC) of the prediction model built on clinical risks was merely 0.659. The AUC of metabolomics prediction model was 0.977 and the AUC of proteomics was 0.875 while the AUC of the integrative-omics prediction model was 0.955. Conclusions Metabolic and protein biomarkers in peripheral blood both have high efficacy and reliability in the prediction of immunotherapy sensitivity in unresectable stage III and IV non-small cell lung cancer, but validation in larger population-based cohorts is still needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LiangWQ完成签到,获得积分10
1秒前
小龙女完成签到 ,获得积分10
1秒前
donwe发布了新的文献求助10
1秒前
南风完成签到,获得积分10
2秒前
rushfuture发布了新的文献求助10
2秒前
2秒前
万松辉发布了新的文献求助10
3秒前
上官若男应助白云四季采纳,获得10
3秒前
3秒前
4秒前
qqxin发布了新的文献求助10
4秒前
汉堡包应助优优采纳,获得10
4秒前
今后应助yee采纳,获得10
5秒前
沈誉完成签到,获得积分10
5秒前
7秒前
princelee完成签到,获得积分10
7秒前
张CEO发布了新的文献求助10
8秒前
zzzzzz发布了新的文献求助20
8秒前
嗯嗯发布了新的文献求助10
8秒前
久念发布了新的文献求助10
9秒前
噗噗发布了新的文献求助10
9秒前
科研通AI6应助Allen采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
斯文败类应助水溶山脉采纳,获得10
9秒前
Naonaoo完成签到,获得积分10
10秒前
10秒前
罗伊黄完成签到 ,获得积分10
11秒前
11秒前
11秒前
xuanxuan完成签到,获得积分20
11秒前
可达鸭发布了新的文献求助10
11秒前
zzzzzz完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
小愿张发布了新的文献求助30
13秒前
炙热的若枫完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5447418
求助须知:如何正确求助?哪些是违规求助? 4556422
关于积分的说明 14256802
捐赠科研通 4478816
什么是DOI,文献DOI怎么找? 2453862
邀请新用户注册赠送积分活动 1444575
关于科研通互助平台的介绍 1420590