化学
分析物
反相色谱法
色谱法
采样(信号处理)
生物系统
相(物质)
分数(化学)
保留时间
分子动力学
肽
分析化学(期刊)
高效液相色谱法
计算化学
计算机科学
生物化学
有机化学
滤波器(信号处理)
计算机视觉
生物
作者
Pablo M. Scrosati,Evelyn H. MacKay-Barr,Lars Konermann
标识
DOI:10.1021/acs.analchem.4c05428
摘要
Reversed-phase liquid chromatography (RPLC) is an essential tool for separating complex mixtures such as proteolytic digests in bottom-up proteomics. There is growing interest in methods that can predict the RPLC retention behavior of peptides and other analytes. Already, existing algorithms provide excellent performance based on empirical rules or large sets of RPLC training data. Here we explored a new type of retention prediction strategy that relies on first-principles modeling of peptide interactions with a C18 stationary phase. We recently demonstrated that molecular dynamics (MD) simulations can provide atomistic insights into the behavior of peptides under RPLC conditions (
科研通智能强力驱动
Strongly Powered by AbleSci AI