Spatio-Temporal Fusion of LiDAR and Camera Data for Omnidirectional Depth Perception

计算机科学 激光雷达 人工智能 形势意识 计算机视觉 目标检测 传感器融合 基本事实 任务(项目管理) 实时计算 模式识别(心理学) 遥感 工程类 地质学 航空航天工程 系统工程
作者
Linlin Zhang,Xiang Yu,Yaw Adu‐Gyamfi,Carlos Sun
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2678 (4): 308-322 被引量:4
标识
DOI:10.1177/03611981231184187
摘要

Object recognition and depth perception are two tightly coupled tasks that are indispensable for situational awareness. Most autonomous systems are able to perform these tasks by processing and integrating data streaming from a variety of sensors. The multiple hardware and sophisticated software architectures required to operate these systems makes them expensive to scale and operate. This paper implements a fast, monocular vision system that can be used for simultaneous object recognition and depth perception. We borrow from the architecture of a start-of-the-art object recognition system, YOLOv3, and extend its architecture by incorporating distances and modifying its loss functions and prediction vectors to enable it to multitask on both tasks. The vision system is trained on a large database acquired through the coupling of LiDAR measurements with complementary 360-degree camera to generate a high-fidelity labeled dataset. The performance of the multipurpose network is evaluated on a test dataset consisting of a total of 7,634 objects collected on a different road network. When compared with ground truth LiDAR data, the proposed network achieves a mean absolute percentage error rate of 11% on the passenger car within 10 m and a mean error rate of 7% or 9% on the truck within 10 m and beyond 10 m, respectively. It was also observed that adding a second task (depth perception) to the modeling network improved the accuracy of object detection by about 3%. The proposed multipurpose model can be used for the development of automated alert systems, traffic monitoring, and safety monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Pursue发布了新的文献求助10
刚刚
JamesPei应助sdl采纳,获得10
刚刚
邓少龙发布了新的文献求助10
1秒前
Tina完成签到 ,获得积分10
1秒前
2秒前
2秒前
谨慎初曼发布了新的文献求助50
3秒前
3秒前
wang发布了新的文献求助10
4秒前
4秒前
hyhy发布了新的文献求助10
4秒前
4秒前
crazy完成签到,获得积分10
4秒前
田国兵发布了新的文献求助10
4秒前
科研通AI2S应助文竹采纳,获得10
5秒前
思源应助郁金香采纳,获得10
5秒前
过儿发布了新的文献求助10
5秒前
我是老大应助欧维采纳,获得10
6秒前
6秒前
Sean发布了新的文献求助10
7秒前
执着惜梦发布了新的文献求助10
7秒前
shuaishuyi发布了新的文献求助10
7秒前
7秒前
傅勃霖完成签到,获得积分10
7秒前
Owen_Hu_11完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
Leslie应助噗噗xie采纳,获得10
9秒前
君君完成签到,获得积分10
9秒前
淡忘完成签到 ,获得积分10
10秒前
10秒前
Pursue完成签到,获得积分10
10秒前
10秒前
charles完成签到,获得积分10
10秒前
11秒前
无花果应助wfy采纳,获得10
12秒前
七月完成签到 ,获得积分10
12秒前
wobisheng完成签到,获得积分10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978415
求助须知:如何正确求助?哪些是违规求助? 3522416
关于积分的说明 11213317
捐赠科研通 3259798
什么是DOI,文献DOI怎么找? 1799678
邀请新用户注册赠送积分活动 878563
科研通“疑难数据库(出版商)”最低求助积分说明 806987