单核苷酸多态性
生物
核糖体分析
遗传学
五素未翻译区
翻译(生物学)
核糖体
编码区
计算生物学
内部核糖体进入位点
起始密码子
内含子
信使核糖核酸
核糖核酸
基因
基因型
摘要
Abstract The functional impact of single nucleotide polymorphisms (SNPs) on translation has yet to be considered when prioritizing disease-causing SNPs from genome-wide association studies (GWAS). Here we apply machine learning models to genome-wide ribosome profiling data to predict SNP function by forecasting ribosome collisions during mRNA translation. SNPs causing remarkable ribosome occupancy changes are named RibOc-SNPs (Ribosome-Occupancy-SNPs). We found that disease-related SNPs tend to cause notable changes in ribosome occupancy, suggesting translational regulation as an essential pathogenesis step. Nucleotide conversions, such as ‘G → T’, ‘T → G’ and ‘C → A’, are enriched in RibOc-SNPs, with the most significant impact on ribosome occupancy, while ‘A → G’ (or ‘A→ I’ RNA editing) and ‘G → A’ are less deterministic. Among amino acid conversions, ‘Glu → stop (codon)’ shows the most significant enrichment in RibOc-SNPs. Interestingly, there is selection pressure on stop codons with a lower collision likelihood. RibOc-SNPs are enriched at the 5′-coding sequence regions, implying hot spots of translation initiation regulation. Strikingly, ∼22.1% of the RibOc-SNPs lead to opposite changes in ribosome occupancy on alternative transcript isoforms, suggesting that SNPs can amplify the differences between splicing isoforms by oppositely regulating their translation efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI