已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EER-DETR: An Improved Method for Detecting Defects on the Surface of Solar Panels Based on RT-DETR

环境科学
作者
Jiajun Dun,Hai Yang,Hsiang‐Yu Yuan,Ying Tang
出处
期刊:Applied sciences [MDPI AG]
卷期号:15 (11): 6217-6217 被引量:2
标识
DOI:10.3390/app15116217
摘要

In the context of the rapid popularization of clean energy, the precise identification of surface defects on photovoltaic modules has become a core technical bottleneck limiting the operational efficiency of power stations. In response to the shortcomings of existing detection methods in identifying tiny defects and model efficiency, this study innovatively constructed the EER-DETR detection framework: firstly, a feature reconstruction module WDBB with a differentiable branch structure was introduced to significantly enhance the feature retention ability for fine cracks and other small targets; secondly, an adaptive feature pyramid network EHFPN was innovatively designed, which achieved efficient integration of multi-level features through a dynamic weight allocation mechanism, reducing the model complexity by 9.7% while maintaining detection accuracy, solving the industry problem of “precision—efficiency imbalance” in traditional feature pyramid networks; finally, an enhanced upsampling component was introduced to effectively address the problem of detail loss that occurs in traditional methods during image resolution enhancement. Experimental verification shows that the improved algorithm increased the average precision (mAP@0.5) on the panel dataset by 1.9%, and its comprehensive performance also exceeded RT-DETR. Based on the industry standard PVEL-AD, the detection rate of typical defects significantly improved compared to the baseline model. The core innovation of this research lies in the combination of differentiable architecture design and dynamic feature management, providing a detection tool for the intelligent operation and maintenance of photovoltaic power stations that possesses both high precision and lightweight characteristics. It has significant engineering application value and academic reference significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助hp采纳,获得10
2秒前
4秒前
wsh发布了新的文献求助10
5秒前
huluwa完成签到,获得积分10
6秒前
gaoqingsong完成签到,获得积分10
8秒前
9秒前
15秒前
木子完成签到 ,获得积分10
15秒前
海绵宝宝完成签到 ,获得积分10
16秒前
科研毛毛虫完成签到,获得积分10
16秒前
whtrg101应助aliu采纳,获得10
17秒前
悦耳的笑翠完成签到 ,获得积分10
17秒前
17秒前
cucumber完成签到 ,获得积分10
18秒前
星辰大海应助111版采纳,获得10
18秒前
20秒前
农农完成签到 ,获得积分10
20秒前
23秒前
24秒前
戈惜完成签到 ,获得积分10
24秒前
24秒前
开心快乐水完成签到 ,获得积分10
26秒前
26秒前
27秒前
硝基甲苯完成签到 ,获得积分10
28秒前
千里毅完成签到 ,获得积分10
28秒前
28秒前
29秒前
十三完成签到 ,获得积分10
30秒前
克拉拉拉发布了新的文献求助10
31秒前
栗松琛发布了新的文献求助10
31秒前
在水一方应助yuanyuan采纳,获得10
31秒前
31秒前
迷路荷花发布了新的文献求助10
34秒前
34秒前
走走发布了新的文献求助10
34秒前
35秒前
Jason完成签到,获得积分20
36秒前
甜蜜的大象完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599529
求助须知:如何正确求助?哪些是违规求助? 4685187
关于积分的说明 14838118
捐赠科研通 4668833
什么是DOI,文献DOI怎么找? 2538056
邀请新用户注册赠送积分活动 1505447
关于科研通互助平台的介绍 1470816