亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting new-onset stroke with machine learning: development of a model integrating traditional Chinese and western medicine

西医 冲程(发动机) 医学 替代医学 传统医学 中医药 人工智能 机器学习 计算机科学 工程类 病理 机械工程
作者
Liuding Wang,Jingzi Shi,Lina Miao,Yifan Chen,Jingjing Wei,Min Jia,Zhi-yi Gong,Ze Yang,Jian Lyu,Zhang Yunling,Xiao Liang
出处
期刊:Frontiers in Pharmacology [Frontiers Media]
卷期号:16
标识
DOI:10.3389/fphar.2025.1546878
摘要

Introduction The integration of traditional Chinese medicine (TCM) and Western medicine has demonstrated effectiveness in the primary prevention of stroke. Therefore, our study aims to utilize TCM syndromes alongside conventional risk factors as predictive variables to construct a machine learning model for assessing the risk of new-onset stroke. Methods We conducted a ten-year follow-up study encompassing 4,511 participants from multiple Chinese community hospitals. The dependent variable was the occurrence of the new-onset stroke, while independent variables included age, gender, systolic blood pressure (SBP), diabetes, blood lipids, carotid atherosclerosis, smoking status, and TCM syndromes. We developed the models using XGBoost in conjunction with SHapley Additive exPlanations (SHAP) for interpretability, and logistic regression with a nomogram for clinical application. Results A total of 1,783 individuals were included (1,248 in the training set and 535 in the validation set), with 110 patients diagnosed with new-onset stroke. The logistic model demonstrated an AUC of 0.746 (95% CI : 0.719–0.774) in the training set and 0.658 (95% CI : 0.572–0.745) in the validation set. The XGBoost model achieved a training set AUC of 0.811 (95% CI : 0.788–0.834) and a validation set AUC of 0.628 (95% CI : 0.537–0.719). SHAP analysis showed that elevated SBP, Fire syndrome in TCM, and carotid atherosclerosis were the three most important features for predicting the new-onset stroke. Conclusion Under identical traditional risk factors, Chinese residents with Fire syndrome may have a higher risk of new-onset stroke. In high-risk populations for stroke, it is recommended to prioritize the screening and management of hypertension, Fire syndrome, and carotid atherosclerosis. However, future high-performance TCM predictive models require more objective and larger datasets for optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangkongxinglang完成签到,获得积分10
7秒前
斯文败类应助明亮的初阳采纳,获得10
7秒前
华仔应助Lucien采纳,获得10
8秒前
WANG应助科研通管家采纳,获得10
8秒前
andrele应助科研通管家采纳,获得10
9秒前
9秒前
38秒前
42秒前
明亮的初阳完成签到,获得积分10
50秒前
1分钟前
1分钟前
胡可完成签到 ,获得积分10
1分钟前
zhang完成签到 ,获得积分10
1分钟前
小王发布了新的文献求助10
1分钟前
Ava应助小王采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
2分钟前
高高元柏发布了新的文献求助10
2分钟前
高高元柏完成签到,获得积分20
2分钟前
2分钟前
Lucien发布了新的文献求助10
2分钟前
KaK发布了新的文献求助30
3分钟前
柚子完成签到 ,获得积分10
3分钟前
andrele应助科研通管家采纳,获得10
4分钟前
A,w携念e行ོ完成签到,获得积分10
5分钟前
初次完成签到 ,获得积分10
5分钟前
安渝完成签到 ,获得积分10
5分钟前
李健应助jiaobu采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
桐桐应助淡定小蜜蜂采纳,获得10
6分钟前
科研通AI2S应助tkurds采纳,获得10
6分钟前
7分钟前
7分钟前
bellapp完成签到 ,获得积分10
8分钟前
好名字完成签到 ,获得积分10
8分钟前
Jasper应助科研通管家采纳,获得10
8分钟前
8分钟前
FashionBoy应助竹子采纳,获得10
8分钟前
chiyu完成签到,获得积分10
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792512
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10281976
捐赠科研通 3053482
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468