ECG-SMART-NET: A Deep Learning Architecture for Precise ECG Diagnosis of Occlusion Myocardial Infarction

心肌梗塞 心脏病学 心电图 内科学 计算机科学 闭塞 医学 生物医学工程 人工智能
作者
Nathan T. Riek,Murat Akçakaya,Zeineb Bouzid,Tanmay Gokhale,Stephanie Helman,Karina Kraevsky-Philips,Ruizhi Ji,Ervin Sejdić,Jessica K. Zègre‐Hemsey,Christian Martin‐Gill,Clifton W. Callaway,Samir Saba,Salah S. Al‐Zaiti
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-8
标识
DOI:10.1109/tbme.2025.3573581
摘要

In this paper we develop and evaluate ECG-SMART-NET for occlusion myocardial infarction (OMI) identification. OMI is a severe form of heart attack characterized by complete blockage of one or more coronary arteries requiring immediate referral for cardiac catheterization to restore blood flow to the heart. Two thirds of OMI cases are difficult to visually identify from a 12-lead electrocardiogram (ECG) and can be potentially fatal if not identified quickly. Previous works on this topic are scarce, and current state-of-the-art evidence suggests both feature-based random forests and convolutional neural networks (CNNs) are promising approaches to improve ECG detection of OMI. While the ResNet architecture has been adapted for use with ECG recordings, it is not ideally suited to capture informative temporal features within each lead and the spatial concordance or discordance across leads. We propose a clinically informed modification of the ResNet-18 architecture. The model first learns temporal features through temporal convolutional layers with 1xk kernels followed by a spatial convolutional layer, after the residual blocks, with 12x1 kernels to learn spatial features. ECG-SMART-NET was benchmarked against the original ResNet-18 and other state-of-the-art models on a multisite real-word clinical dataset that consists of 10,393 ECGs from 7,397 unique patients (rate of OMI = 7.2%). ECG-SMART-NET outperformed other models in the classification of OMI with a test AUC of 0.953 [0.921, 0.978]. ECG-SMART-NET can outperform the state-of-the-art random forest for OMI prediction and is better suited for this task than the original ResNet-18 architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助听风采纳,获得10
1秒前
1秒前
科研通AI6应助寒生采纳,获得10
1秒前
1秒前
leodu完成签到,获得积分10
1秒前
脑洞疼应助cmc采纳,获得10
1秒前
2秒前
2秒前
6秒前
NexusExplorer应助Trenblin采纳,获得10
6秒前
6秒前
超级困蛋发布了新的文献求助10
7秒前
8秒前
mei发布了新的文献求助10
9秒前
谢大喵发布了新的文献求助30
9秒前
纪洪森完成签到,获得积分20
9秒前
10秒前
12秒前
13秒前
传奇3应助明理的以亦采纳,获得50
13秒前
13秒前
Hello应助灰烬采纳,获得10
15秒前
麦克斯韦的小妖完成签到,获得积分10
16秒前
Hello应助qiqi1111采纳,获得10
16秒前
NexusExplorer应助超级困蛋采纳,获得10
16秒前
ihan关注了科研通微信公众号
17秒前
超帅的薯片完成签到,获得积分10
18秒前
程公子发布了新的文献求助10
18秒前
19秒前
dandan发布了新的文献求助10
20秒前
土土完成签到,获得积分10
20秒前
20秒前
科研通AI6应助Seciy采纳,获得20
20秒前
21秒前
听风发布了新的文献求助10
22秒前
Ava应助memory采纳,获得10
22秒前
22秒前
Noah完成签到 ,获得积分0
22秒前
科研参基人关注了科研通微信公众号
23秒前
hy完成签到 ,获得积分10
24秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381853
求助须知:如何正确求助?哪些是违规求助? 4505159
关于积分的说明 14020494
捐赠科研通 4414474
什么是DOI,文献DOI怎么找? 2424905
邀请新用户注册赠送积分活动 1417780
关于科研通互助平台的介绍 1395648