Hyperspectral imaging technology for nondestructive identification of quality deterioration in fruits and vegetables: a review

高光谱成像 鉴定(生物学) 环境科学 遥感 生物 地理 植物
作者
Guoling Wan,Jianguo He,Xianghong Meng,Guishan Liu,Jingjing Zhang,Fang Ma,Qian Zhang,Di Wu
出处
期刊:Critical Reviews in Food Science and Nutrition [Taylor & Francis]
卷期号:: 1-30 被引量:3
标识
DOI:10.1080/10408398.2025.2487134
摘要

With the increasing demand for high quality agri-food commodities, the issues of internal and external quality of fruits and vegetables have received widespread attention globally. To obtain the healthy fruits and vegetables, it is essential to develop advanced nondestructive detection technologies for identification of quality deterioration of target sample. Hyperspectral imaging (HSI) technology contains rich spectral and imaging information, which is capable of acquiring a detailed response of quality deterioration in fruits and vegetables. The review delves into the fundamental mechanism and damage type of quality deterioration caused by physical, chemical and biological factors within the domain of fruits and vegetables analysis. Various forms of deterioration encompassing surface defects, chilling injury, mechanical damage, wilting, browning, and microbial infection are summarized. Moreover, this overview also provides recent advances of HSI technology coupled with machine learning algorithms for quality evaluation and discrimination of different varieties fruits and vegetables. It also critically discusses the existing challenges and future prospects of the HSI technology in actual applications. Despite the extant limitations resulting from high-dimensional hyperspectral data and limited number of samples, the ongoing evolution of multi-sensor fusion architectures and artificial intelligence algorithms will promote HSI technology from laboratory to on-line monitoring in industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助佟杰采纳,获得20
2秒前
chen完成签到,获得积分10
2秒前
鸣蜩阿六完成签到,获得积分10
2秒前
SciGPT应助悠雯采纳,获得10
3秒前
3秒前
小王完成签到,获得积分10
3秒前
WY完成签到,获得积分10
4秒前
ljy发布了新的文献求助10
5秒前
6秒前
pancake应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
zfh完成签到,获得积分10
7秒前
7秒前
小马甲应助科研通管家采纳,获得20
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
lgq12697应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
MAVS完成签到,获得积分10
8秒前
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
十四完成签到 ,获得积分10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助迷人芫采纳,获得10
8秒前
尉迟希望应助nora采纳,获得20
8秒前
美好斓应助科研通管家采纳,获得100
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
lgq12697应助科研通管家采纳,获得10
9秒前
乐乐应助杨晓白采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070231
求助须知:如何正确求助?哪些是违规求助? 4291424
关于积分的说明 13370277
捐赠科研通 4111739
什么是DOI,文献DOI怎么找? 2251660
邀请新用户注册赠送积分活动 1256787
关于科研通互助平台的介绍 1189405