亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An accurate inland water garbage recognition network for USV camera images

垃圾 计算机科学 人工智能 计算机视觉 环境科学 程序设计语言
作者
Min Lu,Xia Xiao,Xiaoyu Zhang,Yuan Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (4): 045801-045801 被引量:1
标识
DOI:10.1088/1361-6501/adc02e
摘要

Abstract Accurate detection of water surface garbage is crucial for developing an environmentally friendly Internet of Things (IoT) system based on unmanned surface vehicles (USVs). However, it is still challenging to automatically recognize and measure the location of water garbage, hindered by complex factors like varying sunlight conditions and the minute size of garbage targets. This paper aims to develop an accurate water garbage recognition network (WGR-Net) that improves performance through efficient feature extraction, transmission, and restoration of feature resolution. The proposed method first adopts the YOLOv9 network architecture that combines generalized efficient layer aggregation network with programmable gradient information to overcome the problem of data loss in deep networks. Then, in order to improve the accuracy and training efficiency of models with massive parameters, the backbone module of the pretrained model on the COCO dataset is frozen for feature extraction. The head module of this pretrained model is transferred and fine-tuned by USV camera images specifically for water surface garbage recognition. Furthermore, an ultra-lightweight and effective upsampler is introduced into the fine-tuned model to restore the feature resolution. The performance of the proposed model is tested using the FLoW-IMG dataset collected by the ORCA unmanned cleaning vessel and WSODD dataset, and comprehensive performance comparisons are conducted on multiple YOLO series models. The results demonstrate that the proposed WGR-Net significantly improves the accuracy of water garbage recognition, achieving a mAP@0.5 of 92.9% and mAP@0.50.95 of 51.7%. The garbage tracking results of water surface video also show a reduction in missed and false detections. The proposed method effectively promotes the accurate recognition of inland water garbage, providing strong technical support for the application of USV based environmental IoT systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
洛森发布了新的文献求助10
5秒前
爆米花应助byho采纳,获得10
10秒前
Thi发布了新的文献求助30
18秒前
魔幻的芳完成签到,获得积分10
34秒前
火星上的宝马完成签到,获得积分10
37秒前
40秒前
悲凉的忆南完成签到,获得积分10
40秒前
41秒前
陈旧完成签到,获得积分10
44秒前
Emma完成签到 ,获得积分10
46秒前
欣欣子完成签到,获得积分10
47秒前
sunstar完成签到,获得积分10
50秒前
yxl完成签到,获得积分10
54秒前
可耐的盈完成签到,获得积分10
57秒前
绿毛水怪完成签到,获得积分10
1分钟前
lsc完成签到,获得积分10
1分钟前
1分钟前
小fei完成签到,获得积分10
1分钟前
ls完成签到,获得积分10
1分钟前
水牛完成签到,获得积分10
1分钟前
麻辣薯条完成签到,获得积分10
1分钟前
时尚身影完成签到,获得积分10
1分钟前
流苏完成签到,获得积分10
1分钟前
流苏2完成签到,获得积分10
1分钟前
1分钟前
dqs发布了新的文献求助10
1分钟前
早睡早起发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
早睡早起完成签到,获得积分10
1分钟前
1分钟前
呆萌剑封完成签到,获得积分20
1分钟前
1分钟前
赘婿应助dqs采纳,获得10
1分钟前
Arthit完成签到 ,获得积分10
2分钟前
2分钟前
今后应助cactus采纳,获得10
2分钟前
OnlyHarbour发布了新的文献求助10
2分钟前
共享精神应助11采纳,获得10
2分钟前
呜呼完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595721
求助须知:如何正确求助?哪些是违规求助? 4680968
关于积分的说明 14818191
捐赠科研通 4652213
什么是DOI,文献DOI怎么找? 2535586
邀请新用户注册赠送积分活动 1503530
关于科研通互助平台的介绍 1469764