Optimizing Scalable Targeted Marketing Policies with Constraints

可扩展性 营销 业务 计算机科学 数据库
作者
Haihao Lu,Duncan Simester,Yuting Zhu
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:2
标识
DOI:10.2139/ssrn.4668582
摘要

Targeted marketing policies target different customers with different marketing actions. While most research has focused on training targeting policies without managerial constraints, in practice, many firms face managerial constraints when implementing these policies. For example, firms may face volume constraints on the maximum or minimum number of actions they can take, or on the minimum acceptable outcomes for different customer segments. They may also face similarity (fairness) constraints that require similar actions with different groups of customers. Traditional optimization methods face challenges when solving problems with either many customers or many constraints. We show how recent advances in linear programming can be adapted to the targeting of marketing actions. We provide a theoretical guarantee comparing how the proposed algorithm scales compared to state-of-the-art benchmarks (primal simplex, dual simplex and barrier methods). We also extend existing guarantees on optimality and computation speed, by adapting them to accommodate the characteristics of targeting problems. We implement the proposed algorithm using data from a field experiment with over 2 million customers, and six different marketing actions (including a no action "Control''). We use this application to evaluate the computation speed and range of problems the algorithm can solve, comparing it to benchmark methods. The findings confirm that the algorithm makes it feasible to train large-scale targeting problems that include volume and similarity constraints.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzy998应助逸云采纳,获得10
1秒前
2秒前
2秒前
完美世界应助将来将去采纳,获得10
3秒前
4秒前
大方依玉完成签到 ,获得积分10
4秒前
5秒前
华仔应助Enoch采纳,获得10
7秒前
7秒前
7秒前
ZifuAnzup发布了新的文献求助10
8秒前
慕容雅旋发布了新的文献求助10
10秒前
脑洞疼应助homer采纳,获得10
10秒前
vampirell完成签到,获得积分0
10秒前
xiaoziqing1发布了新的文献求助10
10秒前
大帅哥发布了新的文献求助10
10秒前
11秒前
我嘞个豆发布了新的文献求助20
12秒前
12秒前
在水一方应助大帅哥采纳,获得10
14秒前
怡然的芯完成签到,获得积分10
14秒前
15秒前
pan liu发布了新的文献求助10
15秒前
16秒前
怡然的芯发布了新的文献求助10
17秒前
踏雪寻梅完成签到,获得积分10
17秒前
英俊的铭应助ZifuAnzup采纳,获得10
18秒前
顾矜应助桃子e采纳,获得10
18秒前
深情安青应助ewmmel采纳,获得10
18秒前
shain完成签到,获得积分10
18秒前
丘比特应助ewmmel采纳,获得10
18秒前
NexusExplorer应助ewmmel采纳,获得10
18秒前
Jasper应助ewmmel采纳,获得10
18秒前
NexusExplorer应助ewmmel采纳,获得10
18秒前
桐桐应助ewmmel采纳,获得10
18秒前
Hello应助ewmmel采纳,获得10
18秒前
Brave完成签到,获得积分10
18秒前
慕容雅旋完成签到,获得积分10
18秒前
19秒前
19秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110558
求助须知:如何正确求助?哪些是违规求助? 3648998
关于积分的说明 11557674
捐赠科研通 3354198
什么是DOI,文献DOI怎么找? 1842816
邀请新用户注册赠送积分活动 909033
科研通“疑难数据库(出版商)”最低求助积分说明 825912