亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing Scalable Targeted Marketing Policies with Constraints

可扩展性 营销 业务 计算机科学 数据库
作者
Haihao Lu,Duncan Simester,Yuting Zhu
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:2
标识
DOI:10.2139/ssrn.4668582
摘要

Targeted marketing policies target different customers with different marketing actions. While most research has focused on training targeting policies without managerial constraints, in practice, many firms face managerial constraints when implementing these policies. For example, firms may face volume constraints on the maximum or minimum number of actions they can take, or on the minimum acceptable outcomes for different customer segments. They may also face similarity (fairness) constraints that require similar actions with different groups of customers. Traditional optimization methods face challenges when solving problems with either many customers or many constraints. We show how recent advances in linear programming can be adapted to the targeting of marketing actions. We provide a theoretical guarantee comparing how the proposed algorithm scales compared to state-of-the-art benchmarks (primal simplex, dual simplex and barrier methods). We also extend existing guarantees on optimality and computation speed, by adapting them to accommodate the characteristics of targeting problems. We implement the proposed algorithm using data from a field experiment with over 2 million customers, and six different marketing actions (including a no action "Control''). We use this application to evaluate the computation speed and range of problems the algorithm can solve, comparing it to benchmark methods. The findings confirm that the algorithm makes it feasible to train large-scale targeting problems that include volume and similarity constraints.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助科研通管家采纳,获得10
19秒前
嘿嘿嘿应助科研通管家采纳,获得10
19秒前
Orange应助科研通管家采纳,获得10
19秒前
嘿嘿嘿应助科研通管家采纳,获得10
20秒前
24秒前
39秒前
41秒前
姚老表完成签到,获得积分10
52秒前
1分钟前
量子星尘发布了新的文献求助50
1分钟前
1分钟前
陈博士发布了新的文献求助30
1分钟前
2分钟前
思源应助科研通管家采纳,获得30
2分钟前
嘿嘿嘿应助科研通管家采纳,获得10
2分钟前
寒冷的如之完成签到,获得积分10
2分钟前
2分钟前
LiangRen完成签到 ,获得积分10
3分钟前
脑洞疼应助hahaha123采纳,获得20
3分钟前
3分钟前
3分钟前
3分钟前
hahaha123发布了新的文献求助20
3分钟前
小马甲应助科研通管家采纳,获得10
4分钟前
hahaha123完成签到,获得积分10
4分钟前
Willow完成签到,获得积分10
4分钟前
4分钟前
mengliu完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
顾矜应助Shallery采纳,获得10
5分钟前
莫名是个小疯子完成签到,获得积分10
6分钟前
6分钟前
6分钟前
7分钟前
7分钟前
丸子完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
The Chemical Industry in Europe, 1850–1914 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5161356
求助须知:如何正确求助?哪些是违规求助? 4354919
关于积分的说明 13559025
捐赠科研通 4199511
什么是DOI,文献DOI怎么找? 2303186
邀请新用户注册赠送积分活动 1303194
关于科研通互助平台的介绍 1248952