A novel probabilistic gradient boosting model with multi-approach feature selection and iterative seasonal trend decomposition for short-term load forecasting

期限(时间) 概率逻辑 特征选择 梯度升压 分解 概率预测 Boosting(机器学习) 选择(遗传算法) 计算机科学 计量经济学 数学优化 数学 人工智能 物理 生态学 随机森林 量子力学 生物
作者
Priyesh Saini,S. K. Parida
出处
期刊:Energy [Elsevier BV]
卷期号:: 130975-130975
标识
DOI:10.1016/j.energy.2024.130975
摘要

Existing regression, tree-based and NN models either lacks probabilistic prediction, takes longer training time, have high computational requirements or sacrifice accuracy. This paper introduces a novel framework, (MAFS+ISTD+PGBM), specifically to overcome these limitations. First three challenges are addressed by integrating gradient boosting and quantile regression model. The key idea is to combine speed and scalability of gradient boosting with probabilistic capabilities of quantile regression, forming PGBM. However, the issue of mediocre accuracy still remained. To address this, two pre-processing techniques are introduced. MAFS utilizes statistical methods and knowledge-based analysis to identify the most relevant features, while ISTD extracts and eliminates trend and seasonality components, ensuring stationarity. After rigorous evaluations, (MAFS+ISTD+PGBM) emerges as the superior performer surpassing all existing models in terms of training time and accuracy with highest R2 score of 0.997 and low values across all error metrics. The proposed model took less than one-third of training time (∼15 min) compared to CNN-LSTM+attn., (∼48 min), the only model with comparable accuracy of proposed model. Thus, proposed approach shall be used to empower grid operators with highly accurate and cost-effective probabilistic forecasts which allows them to make informed decisions about system stability and optimize resource utilization, ensuring reliability and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cxwcn完成签到 ,获得积分10
刚刚
月亮与六便士完成签到 ,获得积分10
1秒前
JamesPei应助111采纳,获得10
1秒前
2秒前
热狗完成签到 ,获得积分10
2秒前
Wxxxxx完成签到 ,获得积分10
2秒前
英勇的半兰完成签到 ,获得积分10
3秒前
lilia完成签到,获得积分10
3秒前
鲤鱼青雪完成签到,获得积分10
5秒前
sssssssssss完成签到,获得积分10
5秒前
6秒前
hhh发布了新的文献求助10
6秒前
彪壮的亦瑶完成签到 ,获得积分10
6秒前
LINHAI完成签到,获得积分10
6秒前
乐乐应助渡劫采纳,获得10
6秒前
柠檬加冰发布了新的文献求助10
7秒前
痴情的翠桃完成签到,获得积分10
8秒前
All完成签到,获得积分10
9秒前
小科完成签到,获得积分10
10秒前
Hui完成签到,获得积分10
10秒前
math完成签到,获得积分10
11秒前
12秒前
小小怪发布了新的文献求助30
13秒前
11完成签到,获得积分10
13秒前
尼斯卡完成签到,获得积分10
13秒前
科研通AI5应助迅速向日葵采纳,获得10
14秒前
Twinkle完成签到,获得积分10
14秒前
15秒前
现代宝宝完成签到,获得积分10
15秒前
Lucas完成签到,获得积分10
15秒前
bettersy完成签到,获得积分10
16秒前
hhh完成签到,获得积分10
16秒前
丹阳阳完成签到,获得积分10
16秒前
lw完成签到,获得积分10
16秒前
licheng完成签到,获得积分10
17秒前
上山石头完成签到,获得积分10
17秒前
hhh完成签到,获得积分10
18秒前
18秒前
南国完成签到,获得积分10
18秒前
wanghua完成签到,获得积分10
19秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Selenium in ruminant nutrition and health 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837609
求助须知:如何正确求助?哪些是违规求助? 3379759
关于积分的说明 10510349
捐赠科研通 3099361
什么是DOI,文献DOI怎么找? 1707079
邀请新用户注册赠送积分活动 821427
科研通“疑难数据库(出版商)”最低求助积分说明 772615