Comparison of different open‐source Digital Elevation Models for landslide susceptibility mapping

数字高程模型 航天飞机雷达地形任务 地质学 先进星载热发射反射辐射计 仰角(弹道) 山崩 归一化差异植被指数 地貌学 曲率 雷达 遥感 环境科学 气候变化 计算机科学 几何学 数学 海洋学 电信
作者
Dingyang Lu,Guoan Tang,Ge Yan,Fengyize Yu,Xiaofen Lin
出处
期刊:Earth Surface Processes and Landforms [Wiley]
卷期号:49 (4): 1411-1427 被引量:5
标识
DOI:10.1002/esp.5777
摘要

Abstract In this study, the application of open‐source digital elevation model (DEM) is explored for regional landslide susceptibility mapping (LSM), and the potential impact of different DEM choices on the mapping accuracy is also examined. With the advancements in remote sensing technology, an increasing number of global open‐source DEMs have been available, with improvement in the accuracy. However, the latest released data are rarely evaluated in LSM research. In this paper, DEM‐based factors, including elevation, aspect, slope, plan curvature and profile curvature, were generated from seven open‐source DEMs, including Advanced Spaceborne Thermal Emission and Reflection (ASTER) V2, ASTERV3, ALOS World 3D‐30 m (AW3D30), Copernicus DEM 30 m (COP) Forest and Buildings removed Copernicus DEM (FABDEM), NASADEM, and Shuttle Radar Topography Mission (SRTM). DEM‐based factors were coupled with the distance to road, distance to river, land use, lithology, rain and normalized difference vegetation index (NDVI). The significant difference between DEMs is determined by comparing the area proportion. Slope, plane curvature and profile curvature are found to have a maximum difference of 15%–20%. Then, K‐Nearest Neighbours (KNN) and Random Forest (RF) were used to predict landslide susceptibility with two sampling methods, namely, 70% for training and 30% for testing (S1); 67% for training and 33% for testing (S2). For KNN with S1, the prediction rate is range from 0.8299 to 0.8701, with a difference of 0.0402. The difference of prediction rate is decreased to 0.0207 for S2 and 0.0258 for RF. COP has the highest prediction rate of 0.8701, 0.9254 and 0.9461 for KNN with S1 and RF with S1 and S2, respectively. ASTERV2 is the worst with prediction rate of 0.8897 and 0.8996 for KNN with S2 and RF with S1, respectively. The research result provides valuable insights for the selection of open‐source DEMs in future LSM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MCY完成签到,获得积分20
刚刚
岑凡完成签到,获得积分10
刚刚
刚刚
Huan发布了新的文献求助10
1秒前
小油条发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
SciGPT应助张睿采纳,获得10
2秒前
充电宝应助安详绿草采纳,获得10
2秒前
javalin完成签到,获得积分20
3秒前
xuanxuan完成签到 ,获得积分10
3秒前
wu发布了新的文献求助10
3秒前
YYY发布了新的文献求助30
3秒前
落后凌晴发布了新的文献求助20
3秒前
斯文的硬币完成签到 ,获得积分10
3秒前
Lucas应助缝纫工采纳,获得10
3秒前
搜集达人应助芋泥啵啵采纳,获得10
3秒前
emmaguo713发布了新的文献求助10
3秒前
小青年儿完成签到 ,获得积分10
4秒前
4秒前
CipherSage应助DUOMI采纳,获得10
4秒前
科研通AI6应助皓月如静采纳,获得10
5秒前
5秒前
5秒前
5秒前
科研通AI6应助十七采纳,获得10
5秒前
wxbroute发布了新的文献求助10
5秒前
糖脎发布了新的文献求助10
5秒前
斯文败类应助YPC采纳,获得10
5秒前
6秒前
无情的花卷完成签到,获得积分10
6秒前
6秒前
qwe完成签到,获得积分10
7秒前
磕学少女发布了新的文献求助10
7秒前
7秒前
大个应助猪猪hero采纳,获得10
7秒前
李爱国应助山鬼采纳,获得10
7秒前
传奇3应助MZlm采纳,获得30
7秒前
Mira_Liu发布了新的文献求助30
7秒前
NexusExplorer应助刘66666采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647245
求助须知:如何正确求助?哪些是违规求助? 4773101
关于积分的说明 15038498
捐赠科研通 4805952
什么是DOI,文献DOI怎么找? 2570026
邀请新用户注册赠送积分活动 1526936
关于科研通互助平台的介绍 1485992