A Nasal Swab Classifier to Evaluate the Probability of Lung Cancer in Patients With Pulmonary Nodules

医学 肺癌 分类器(UML) 内科学 转录组 放射科 病理 人工智能 生物 基因 计算机科学 生物化学 基因表达
作者
Carla Lamb,Kimberly Rieger‐Christ,Chakravarthy Reddy,Jing Huang,Jie Ding,Marla Johnson,P. Sean Walsh,William A. Bulman,Lori Lofaro,Momen M. Wahidi,David Feller‐Kopman,Avrum Spira,Giulia C. Kennedy,Peter J. Mazzone
出处
期刊:Chest [Elsevier BV]
卷期号:165 (4): 1009-1019 被引量:2
标识
DOI:10.1016/j.chest.2023.11.036
摘要

Background Accurate assessment of the probability of lung cancer (pCA) is critical in patients with pulmonary nodules (PN) to help guide decision-making. We sought to validate a clinical-genomic classifier developed using whole-transcriptome sequencing of nasal epithelial cells from patients with a PN ≤ 30 mm who smoke or have previously smoked. Research Question Can the probability of lung cancer in individuals with a PN and a history of smoking be predicted by a classifier that utilizes clinical factors and genomic data from nasal epithelial cells obtained by cytologic brushing? Study Design and Methods Machine learning was used to train a classifier using genomic and clinical features on 1,120 patients with PN labeled as benign or malignant established by a final diagnosis or a minimum of 12 months of radiographic surveillance. The classifier was designed to yield low, intermediate, and high-risk categories. The classifier was validated in an independent set of 312 patients, including 63 patients with a prior history of cancer (other than lung cancer), comparing the classifier prediction with the known clinical outcome. Results In the primary validation set, sensitivity and specificity for low-risk classification are 96% and 42% while sensitivity and specificity for high-risk classification is 58% and 90%. Sensitivity is similar across stages of non-small cell lung cancer, independent of subtype. Performance compared favorably to clinical-only risk models. Analysis of 63 patients with prior cancer shows similar performance as did subanalyses of patients with light vs. heavy smoking burden and those eligible for lung cancer screening vs. those who were not. Interpretation The nasal classifier provides an accurate assessment of pCA in individuals with a PN ≤ 30mm who smoke or have previously smoked. Classifier-guided decision-making could lead to fewer diagnostic procedures in patients without cancer and more timely treatment in patients with lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
修修勾完成签到,获得积分10
刚刚
Smile完成签到,获得积分10
刚刚
1秒前
BETCHA发布了新的文献求助10
1秒前
1秒前
yefeng完成签到,获得积分10
2秒前
卫卫完成签到 ,获得积分10
2秒前
sun完成签到 ,获得积分10
3秒前
科研通AI2S应助Willow采纳,获得10
3秒前
科研通AI2S应助WHL采纳,获得10
3秒前
十一完成签到 ,获得积分10
4秒前
5秒前
罗实完成签到 ,获得积分10
5秒前
5秒前
莫愁完成签到,获得积分10
6秒前
静心完成签到,获得积分10
6秒前
杨涵完成签到 ,获得积分10
6秒前
oO完成签到 ,获得积分10
7秒前
贪玩的万仇完成签到,获得积分10
7秒前
gfdsh发布了新的文献求助10
7秒前
wyx完成签到,获得积分10
7秒前
Conner完成签到 ,获得积分10
8秒前
Allen完成签到,获得积分10
8秒前
王科研完成签到,获得积分10
8秒前
Owen应助我行我素采纳,获得10
8秒前
花痴的慕蕊完成签到,获得积分10
9秒前
M20小陈发布了新的文献求助10
9秒前
胡图图完成签到,获得积分10
9秒前
xiaofeizhu发布了新的文献求助10
9秒前
9秒前
Szj完成签到,获得积分10
9秒前
10秒前
一托托完成签到,获得积分10
10秒前
10秒前
10秒前
迷你的冰旋完成签到,获得积分10
11秒前
hao完成签到,获得积分10
11秒前
Venus完成签到,获得积分10
11秒前
可乐加冰完成签到,获得积分10
12秒前
zht完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795743
求助须知:如何正确求助?哪些是违规求助? 3340790
关于积分的说明 10301851
捐赠科研通 3057307
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805512
科研通“疑难数据库(出版商)”最低求助积分说明 762642