Forest Defender Fusion System for Early Detection of Forest Fires

环境科学 融合 林业 遥感 地理 语言学 哲学
作者
Manar Khalid Ibraheem,Mbarka Belhaj Mohamed,Ahmed Fakhfakh
出处
期刊:Computers [MDPI AG]
卷期号:13 (2): 36-36 被引量:9
标识
DOI:10.3390/computers13020036
摘要

In the past ten years, rates of forest fires around the world have increased significantly. Forest fires greatly affect the ecosystem by damaging vegetation. Forest fires are caused by several causes, including both human and natural causes. Human causes lie in intentional and irregular burning operations. Global warming is a major natural cause of forest fires. The early detection of forest fires reduces the rate of their spread to larger areas by speeding up their extinguishing with the help of equipment and materials for early detection. In this research, an early detection system for forest fires is proposed called Forest Defender Fusion. This system achieved high accuracy and long-term monitoring of the site by using the Intermediate Fusion VGG16 model and Enhanced Consumed Energy-Leach protocol (ECP-LEACH). The Intermediate Fusion VGG16 model receives RGB (red, green, blue) and IR (infrared) images from drones to detect forest fires. The Forest Defender Fusion System provides regulation of energy consumption in drones and achieves high detection accuracy so that forest fires are detected early. The detection model was trained on the FLAME 2 dataset and obtained an accuracy of 99.86%, superior to the rest of the models that track the input of RGB and IR images together. A simulation using the Python language to demonstrate the system in real time was performed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
哈基米应助eagle采纳,获得20
1秒前
stephanie96完成签到 ,获得积分10
1秒前
1秒前
Akim应助zxzuam采纳,获得10
2秒前
wenff完成签到,获得积分10
2秒前
张文凯完成签到,获得积分20
2秒前
格纹发布了新的文献求助10
2秒前
杨一乐完成签到,获得积分10
3秒前
康康0919ing完成签到,获得积分10
3秒前
ttt完成签到,获得积分10
3秒前
谁家那小谁完成签到,获得积分10
4秒前
4秒前
wlei发布了新的文献求助10
4秒前
4秒前
4秒前
爆米花应助NN采纳,获得10
4秒前
ding应助slby采纳,获得10
5秒前
5秒前
5秒前
大个应助Doolin采纳,获得10
5秒前
斯利美尔完成签到,获得积分10
5秒前
虚拟的函完成签到,获得积分10
5秒前
misaka发布了新的文献求助10
6秒前
致两千年前的你完成签到,获得积分10
6秒前
insane发布了新的文献求助10
6秒前
山茶完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
林加雄发布了新的文献求助10
6秒前
zhou发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
明理以南发布了新的文献求助10
7秒前
DF发布了新的文献求助10
8秒前
小熊完成签到,获得积分10
8秒前
自由的飞发布了新的文献求助10
8秒前
危险份子完成签到 ,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5471114
求助须知:如何正确求助?哪些是违规求助? 4573904
关于积分的说明 14341960
捐赠科研通 4501121
什么是DOI,文献DOI怎么找? 2466168
邀请新用户注册赠送积分活动 1454377
关于科研通互助平台的介绍 1428975