Can ChatGPT Kill User-Generated Q&A Platforms?

计算机科学 化学 业务
作者
Jianying Xue,Lizheng Wang,Jinyang Zheng,Yongjun Li,Yong Jie Tan
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.4448938
摘要

Large Language Models (LLMs) technology, e.g., ChatGPT, is expected to reshape a broad spectrum of domains. Among them, the impact on user-generated knowledge-sharing (Q&A) communities is of particular interest because such communities are an important learning source of LLMs, and their future changes may affect the sustainable learning of LLMs. This study examines such impact via the natural experiment of ChatGPT's launching. Safe-guided by supporting evidence of parallel trends, a difference-in-difference (DID) analysis suggests the launching trigger an average 2.64% reduction of question-asking on Stack Overflow, confirming a lower-search-cost-enabled substitution. This substitution, however, is not necessarily a threat to the sustainability of knowledge-sharing communities and hence LLMs. The saved search cost may reallocate to asking a smaller set of questions that is more engaging and of higher quality. The increased engagement per question may offset the engagement loss due to fewer questions, and the quality improvement can benefit LLMs' future learning. Our further analysis on the qualitative changes of the questions, however, doesn't favor this hope. While the questions become longer by 2.7% on average and hence more sophisticated, they are less readable and involve less cognition. Those can be questions by nature hard to understand and process by LLMs. A further mechanism analysis shows that users qualitatively adjust their questions to be longer, less readable and less cognitive. The insignificant change in score given by viewers per question also suggests no improvement in the question quality and decreased platform-wide engagement. Our heterogeneity analysis further suggests that new users are more susceptible. Taken together, our paper suggests LLMs may threaten the survival of user-generated knowledge-sharing communities, which may further threaten the sustainable learning and long-run improvement of LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助斯丹康采纳,获得10
刚刚
gulu发布了新的文献求助10
2秒前
3秒前
skmksd完成签到,获得积分10
4秒前
追逐123完成签到 ,获得积分10
6秒前
丹dan完成签到,获得积分10
6秒前
8秒前
晓筠完成签到,获得积分10
8秒前
8秒前
8秒前
123发布了新的文献求助10
8秒前
linshiba_18完成签到,获得积分10
8秒前
azure发布了新的文献求助10
9秒前
现代的小馒头完成签到,获得积分10
9秒前
linshiba_18发布了新的文献求助10
11秒前
忧郁短靴完成签到,获得积分10
11秒前
传奇3应助树袋采纳,获得10
12秒前
13秒前
凉风送信完成签到,获得积分10
13秒前
14秒前
清脆靳完成签到,获得积分10
14秒前
不爱喝水的辣ki完成签到,获得积分10
15秒前
流苏完成签到,获得积分10
15秒前
gulu完成签到,获得积分10
17秒前
懵懂的苠完成签到 ,获得积分10
17秒前
123完成签到,获得积分20
18秒前
18秒前
22秒前
狂野的海雪完成签到,获得积分10
23秒前
科目三应助兴奋柜子采纳,获得30
24秒前
锺zhishui发布了新的文献求助10
24秒前
24秒前
牧歌完成签到,获得积分0
26秒前
許1111发布了新的文献求助10
26秒前
27秒前
27秒前
27秒前
懵懂的苠关注了科研通微信公众号
28秒前
遇上就这样吧应助穆佳琦采纳,获得210
29秒前
尛瞐慶成发布了新的文献求助10
29秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902553
求助须知:如何正确求助?哪些是违规求助? 3447356
关于积分的说明 10848614
捐赠科研通 3172627
什么是DOI,文献DOI怎么找? 1753048
邀请新用户注册赠送积分活动 847527
科研通“疑难数据库(出版商)”最低求助积分说明 790008