High Discharge Capacity and Ultra-Fast-Charging Sodium Dual-Ion Battery Based on Insoluble Organic Polymer Anode and Concentrated Electrolyte

阳极 材料科学 电池(电) 电解质 有机自由基电池 电化学 储能 钠离子电池 化学工程 纳米技术 电极 化学 法拉第效率 物理化学 功率(物理) 工程类 物理 量子力学
作者
Hongzheng Wu,Zhaochun Ye,Jinlian Zhu,Shenghao Luo,Li Li,Wenhui Yuan
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (44): 49774-49784 被引量:18
标识
DOI:10.1021/acsami.2c14206
摘要

Sodium-based dual-ion batteries have shown great promise for large-scale energy storage applications due to their wide operating voltages, environmental friendliness, abundant sodium resources, and low cost, which are widely investigated by researchers. However, the development of high-performance anode materials is a key requirement for the realization of such electrochemical energy storage systems at the practical application level. Carbonaceous anode materials based on intercalation/deintercalation mechanisms typically exhibit low discharge capacities, while metal-based materials based on conversion or alloying reactions show unsatisfactory stability in performance. On the contrary, organic materials display high theoretical capacities due to their flexible molecular structure designability and stable cyclic performance with fast reaction kinetics based on the unique enolization reaction. Herein, we report an organic polymer anode material of polyimide (PNTO), combined with a high-concentration electrolyte; the sodium-based dual-ion battery system constructed exhibits outstanding electrochemical performance. The full battery shows an ultra-high specific discharge capacity of 293.2 mAh g–1 and can be cycled stably for 3200/5600/4100 cycles at ultra-high rates of 60/120/150 C without degradation. Furthermore, the dual-ion battery system demonstrates an extremely low self-discharge rate of 0.03% h–1 and superior fast-charging–slow-discharging performance. It is one of the best performances reported up to now for a dual-ion full battery based on an organic polymer anode. This novel battery system design strategy will facilitate the advancement of high-performance organic-based dual-ion batteries and is expected to be a promising candidate for large-scale energy storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雷雷完成签到,获得积分10
刚刚
ANG发布了新的文献求助10
刚刚
烤地瓜的z完成签到,获得积分10
1秒前
CodeCraft应助syx采纳,获得10
1秒前
Sunny发布了新的文献求助10
1秒前
2秒前
lilili完成签到,获得积分10
2秒前
erniu完成签到,获得积分10
2秒前
3秒前
wtp完成签到,获得积分10
3秒前
3秒前
101022发布了新的文献求助10
4秒前
WHUT-Batteries完成签到,获得积分0
4秒前
钙离子发布了新的文献求助10
4秒前
4秒前
Yee关注了科研通微信公众号
4秒前
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
zcl应助科研通管家采纳,获得150
5秒前
5秒前
LavGEd完成签到,获得积分10
5秒前
辛勤月饼应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
Muhammad完成签到,获得积分10
5秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
zcl应助科研通管家采纳,获得150
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
费尔南达完成签到,获得积分10
6秒前
7秒前
明理访枫完成签到 ,获得积分10
7秒前
Akim应助Focus_BG采纳,获得10
7秒前
李白发布了新的文献求助10
7秒前
科研通AI6应助luckysame采纳,获得10
7秒前
科研通AI5应助木木林子采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068161
求助须知:如何正确求助?哪些是违规求助? 4289857
关于积分的说明 13365461
捐赠科研通 4109571
什么是DOI,文献DOI怎么找? 2250420
邀请新用户注册赠送积分活动 1255787
关于科研通互助平台的介绍 1188288