石墨烯
材料科学
结晶度
化学气相沉积
堆积
薄脆饼
氧化石墨烯纸
复合材料
纳米技术
石墨烯纳米带
晶界
石墨烯泡沫
微观结构
核磁共振
物理
作者
Kenjiro Hayashi,Naoki Fushimi,Masako Kataoka,Daiyu Kondo,Shintaro Sato
出处
期刊:Nanotechnology
[IOP Publishing]
日期:2022-11-01
卷期号:34 (5): 055701-055701
被引量:2
标识
DOI:10.1088/1361-6528/ac9ec5
摘要
Turbostratic multilayer graphene (MLG) is of great interest due to its unique electronic properties resulting from a linear band dispersion at the K point, which is similar to that of single-layer graphene. The band structure is derived from the stacking structure of turbostratic MLG where graphene layers have random in-plane rotations with respect to each other. Although wafer-scale growth of turbostratic MLG has been demonstrated, the crystallinity of individual graphene layers is still challenging to investigate. In this study, we present a new approach to reveal the grain structure of turbostratic MLG by transmission electron microscopy (TEM) observation. Mechanical delamination is demonstrated for the chemical vapor deposited MLG to peel off the topmost graphene layers by using a polydimethylsiloxane sheet. Micrometer-scale patterning of the MLG prior to the delamination is found to be effective to obtain graphene films with the designed shape and arrangement. Furthermore, the delaminated graphene films are successfully transferred onto a TEM grid, enabling us to estimate the grain size of the turbostratic MLG. This method is potentially applicable for not only preparing samples but also fabricating vertically stacked heterostructure devices using 2D materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI