Human knowledge models: Learning applied knowledge from the data

过度拟合 计算机科学 人工智能 机器学习 人类智力 数据科学 黑匣子 大数据 知识抽取 人工神经网络 数据挖掘
作者
Egor Dudyrev,Ilia Semenkov,Sergei O. Kuznetsov,Gleb Gusev,Andrew J. Sharp,Oleg S. Pianykh
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:17 (10): e0275814-e0275814 被引量:1
标识
DOI:10.1371/journal.pone.0275814
摘要

Artificial intelligence and machine learning have demonstrated remarkable results in science and applied work. However, present AI models, developed to be run on computers but used in human-driven applications, create a visible disconnect between AI forms of processing and human ways of discovering and using knowledge. In this work, we introduce a new concept of "Human Knowledge Models" (HKMs), designed to reproduce human computational abilities. Departing from a vast body of cognitive research, we formalized the definition of HKMs into a new form of machine learning. Then, by training the models with human processing capabilities, we learned human-like knowledge, that humans can not only understand, but also compute, modify, and apply. We used several datasets from different applied fields to demonstrate the advantages of HKMs, including their high predictive power and resistance to noise and overfitting. Our results proved that HKMs can efficiently mine knowledge directly from the data and can compete with complex AI models in explaining the main data patterns. As a result, our study reveals the great potential of HKMs, particularly in the decision-making applications where "black box" models cannot be accepted. Moreover, this improves our understanding of how well human decision-making, modeled by HKMs, can approach the ideal solutions in real-life problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助明理凝阳采纳,获得10
刚刚
刚刚
天侠客完成签到,获得积分10
刚刚
123456完成签到,获得积分10
1秒前
1秒前
xinxin完成签到,获得积分10
2秒前
2秒前
勤奋耳机发布了新的文献求助10
3秒前
4秒前
4秒前
mmm发布了新的文献求助10
4秒前
李学东完成签到,获得积分10
4秒前
5秒前
隐形曼青应助刻苦的易形采纳,获得10
5秒前
堡主发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
123456发布了新的文献求助10
6秒前
rgsrgrs完成签到,获得积分10
7秒前
7秒前
7秒前
嘻嘻发布了新的文献求助10
8秒前
LTDJYYD发布了新的文献求助10
8秒前
LF-Scie完成签到,获得积分10
8秒前
氨气发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
妩媚的海应助RC_Wang采纳,获得10
10秒前
rgsrgrs发布了新的文献求助10
11秒前
ohuo发布了新的文献求助30
11秒前
领导范儿应助简单千儿采纳,获得10
12秒前
12秒前
12秒前
LUNE完成签到 ,获得积分10
12秒前
MY发布了新的文献求助10
13秒前
13秒前
NMC发布了新的文献求助10
13秒前
14秒前
15秒前
乐乐应助Mr权采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5535968
求助须知:如何正确求助?哪些是违规求助? 4623760
关于积分的说明 14588969
捐赠科研通 4564340
什么是DOI,文献DOI怎么找? 2501618
邀请新用户注册赠送积分活动 1480473
关于科研通互助平台的介绍 1451779