Convolutional neural networks (CNNs)-based multi-category damage detection and recognition of high-speed rail (HSR) reinforced concrete (RC) bridges using test images

剥落 卷积神经网络 码头 桥(图论) 结构工程 模式识别(心理学) 计算机科学 人工智能 钢筋 工程类 医学 内科学
作者
Lingkun Chen,Wenxin Chen,Lu Wang,Chencheng Zhai,Xiaolun Hu,Linlin Sun,Yuan Tian,Xiaoming Huang,Lizhong Jiang
出处
期刊:Engineering Structures [Elsevier]
卷期号:276: 115306-115306 被引量:89
标识
DOI:10.1016/j.engstruct.2022.115306
摘要

The fast networking of high-speed rail (HSR) may cause in-service fatigue and ultimate load damage to bridges. This paper investigates the application of deep convolutional neural networks (CNNs) for multi-category damage image classification recognition of HSR-reinforced concrete (RC) bridges. The present study establishes a deep learning (DL) system based on a large amount of HSR bridge test data. When to begin, the damage done to HSR bridge piers may be broken down into three primary categories: concrete cracks, concrete spalling, and reinforcement exposure. These categories are determined by the statistics of HSR bridge pier testing. Secondly, in order to develop an automated recognition model for the damage of HSR piers, AlexNet CNNs were taught a transfer learning approach and then used to train themselves. The correct recognition rate of the three damaged pictures in the actual application of the model is 86% for cracks, 82% for reinforcement exposure, and 70% for concrete spalling, all of which have good recognition rates. The study's accuracy and precision enhance detection efficiency and may be utilized to identify HSR pier deterioration quickly. The research comprises a random selection from the training and validation sets. It also assesses the training model's generalization to out-of-sample pictures for engineering applications. This aspect of the work sets it apart from previous research in the same study area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哆啦十七应助pbj采纳,获得10
1秒前
一事无成的研一完成签到,获得积分10
2秒前
Stella给lvjiahui的求助进行了留言
2秒前
2秒前
奇奇淼发布了新的文献求助10
3秒前
pluto应助小石头采纳,获得10
3秒前
3秒前
闪闪的YOSH完成签到,获得积分10
3秒前
跳跃的鱼完成签到,获得积分10
4秒前
桐桐应助大壮采纳,获得10
4秒前
4秒前
Hello应助小贵梓采纳,获得10
4秒前
LSHS发布了新的文献求助10
5秒前
呼延秋白发布了新的文献求助10
6秒前
任性雨筠完成签到,获得积分10
7秒前
壹壹完成签到 ,获得积分10
7秒前
1111发布了新的文献求助10
7秒前
shunshun发布了新的文献求助10
8秒前
8秒前
大淼完成签到,获得积分10
8秒前
Rez发布了新的文献求助10
8秒前
天真剑成完成签到,获得积分10
9秒前
10秒前
明亮山水完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
念兮完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
rose完成签到,获得积分10
15秒前
15秒前
15秒前
Rez完成签到,获得积分10
16秒前
16秒前
16秒前
1111完成签到,获得积分20
16秒前
17秒前
咔咔咔发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360857
求助须知:如何正确求助?哪些是违规求助? 4491327
关于积分的说明 13982062
捐赠科研通 4394043
什么是DOI,文献DOI怎么找? 2413707
邀请新用户注册赠送积分活动 1406522
关于科研通互助平台的介绍 1381057