Multi-granularity vision transformer via semantic token for hyperspectral image classification

计算机科学 粒度 嵌入 人工智能 卷积神经网络 模式识别(心理学) 变压器 安全性令牌 推论 特征提取 上下文图像分类 图像(数学) 计算机安全 电压 操作系统 物理 量子力学
作者
Bin Li,Er Ouyang,Wenjing Hu,Guoyun Zhang,Lin Zhao,Jianhui Wu
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:43 (17): 6538-6560 被引量:11
标识
DOI:10.1080/01431161.2022.2142078
摘要

ABSTRACTABSTRACTThe superior local context modelling capability of convolutional neural networks (CNNs) in representing features allows greatly enhanced performance in hyperspectral image (HSI) classification tasks by CNN-based methods. However, most of these methods suffer from a restricted receptive field and poor performance in the continuous data domain. To address these issues, we propose a multi-granularity vision transformer via semantic token (MSTViT) for HSI classification, which differs from the existing transformer view by modelling the HSI classification tasks as word embedding problems. Specifically, the MSTViT model extracts multi-level semantic features by a ladder feature extractor and applies a multi-granularity patch embedding module to embed these features simultaneously as different-scale tokens. Moreover, different-granularity tokens are fed to the vision transformer to capture the long-distance dependencies among the different tokens. A depth-wise separable convolution multi-layer perceptron is used to assist the attention mechanism for further excavation of the deep information of HSI. Finally, the performance of HSI classification is improved by fusing the coarse- and fine-granularity representations to generate stronger features. Experimental results on four standard datasets verify the marked improvement of the MSTViT over state-of-the-art CNN and transformer structures. The code of this work is available at https://github.com/zhaolin6/MSTViT for the sake of reproducibility.KEYWORDS: Hyperspectral image classificationconvolutional neural networkstransformerword embeddinglong-distance dependence AcknowledgmentWe would like to take this opportunity to thank the editor and the anonymous reviewers for their outstanding comments and suggestions, which greatly helped us to improve the technical quality and presentation of the article. We would also like to thank Dr. John Olaghere of Hunan Institute of Science and Technology and Prof. Xin-Hua Hu of East Carolina University for their help in reviewing this article.Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementData available at https://github.com/zhaolin6/MSTViT.Additional informationFundingThis work was supported in part by the Natural Science Foundation of Hunan Province of China under Grant 2020JJ4343; in part by the Scientific Research Project of the Hunan Provincial Education Department under Grant 19A201, Grant 19A200, Grant 20A214, and Grant 20A223, in part by the Graduate Research and Innovation Project of Hunan Province under CX20211186; and in part by the Graduate Research and Innovation Project of Hunan Institute of Science and Technology under YCX2021A09.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实博超发布了新的文献求助10
刚刚
奇迹67完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
2秒前
Yumii完成签到 ,获得积分10
3秒前
BowieHuang应助韩程果采纳,获得10
3秒前
cata完成签到,获得积分10
3秒前
4秒前
笑点低的凝阳完成签到,获得积分10
5秒前
孙茜发布了新的文献求助10
5秒前
yulong完成签到,获得积分10
5秒前
5秒前
研友_VZG7GZ应助ping采纳,获得10
7秒前
longfang完成签到,获得积分10
7秒前
XXY爱读文献应助一希采纳,获得10
7秒前
9秒前
9秒前
可爱的微笑应助Fi9zero采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
Apple完成签到,获得积分10
9秒前
李欣超完成签到 ,获得积分10
9秒前
领导范儿应助稳重世开采纳,获得10
10秒前
科研通AI6应助han采纳,获得10
10秒前
蓝胖子完成签到,获得积分10
11秒前
张立敏发布了新的文献求助10
11秒前
朴实的河马完成签到,获得积分10
11秒前
婷婷应助天天采纳,获得10
12秒前
BowieHuang应助天天采纳,获得10
12秒前
NexusExplorer应助天天采纳,获得10
12秒前
酷波er应助天天采纳,获得10
12秒前
13秒前
Lucas应助五六七采纳,获得10
13秒前
cc发布了新的文献求助10
13秒前
小小吴发布了新的文献求助10
14秒前
莫听南发布了新的文献求助30
14秒前
过时的友易完成签到 ,获得积分20
14秒前
锵锵锵应助究究采纳,获得10
14秒前
rr发布了新的文献求助10
14秒前
田様应助huhuhu采纳,获得10
15秒前
15秒前
Apple发布了新的文献求助30
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621186
求助须知:如何正确求助?哪些是违规求助? 4705891
关于积分的说明 14933936
捐赠科研通 4764772
什么是DOI,文献DOI怎么找? 2551485
邀请新用户注册赠送积分活动 1514008
关于科研通互助平台的介绍 1474746