AMS-PAN: Breast ultrasound image segmentation model combining attention mechanism and multi-scale features

计算机科学 分割 人工智能 棱锥(几何) 特征(语言学) 深度学习 卷积神经网络 模式识别(心理学) 图像分割 计算机视觉 特征提取 语言学 光学 物理 哲学
作者
Yuchao Lyu,Yinghao Xu,Xi Jiang,Jianing Liu,Xiaoyan Zhao,Xijun Zhu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:81: 104425-104425 被引量:27
标识
DOI:10.1016/j.bspc.2022.104425
摘要

Breast ultrasound medical images are characterized by poor imaging quality and irregular target edges. During the diagnosis process, it is difficult for physicians to segment tumors manually, and the segmentation accuracy required for diagnosis is high, so there is an urgent need for an automated method to improve the segmentation accuracy as a technical tool to assist diagnosis. This study designed an improved Pyramid Attention Network combining Attention mechanism and Multi-Scale features (AMS-PAN) for breast ultrasound image segmentation. On the encoding side, the model adopts the depthwise separable convolution strategy to achieve a multi-scale receptive field with cumulative small-size convolution, which performs multi-dimensional feature extraction and forms a feature pyramid. The model uses Global Attention Upsample (GAU) feature fusion on the decoding side. In order to further process the fused feature information, the proposed method uses a Spatial and Channel Attention (SCA) module to shift the model’s segmentation focus to the edge texture information. The good segmentation performance of our method is verified through experiments on BUSI and OASBUD. All the designed parts have contributed to the segmentation performance in practical applications. Compared with the traditional non-deep learning methods and the current mainstream deep learning methods, the improvement of the model in Dice and IoU metrics is pronounced. AMS-PAN has high computational efficiency, and its good performance has been proven to play a role in ultrasound detection tasks of breast tumors for physicians to specific auxiliary diagnostic roles to guide the subsequent diagnosis and treatment services for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luo发布了新的文献求助10
刚刚
1秒前
阿宝完成签到,获得积分10
2秒前
打打应助li采纳,获得30
2秒前
健康幸福平安完成签到,获得积分10
2秒前
汕头凯奇完成签到,获得积分10
2秒前
3秒前
科研通AI5应助长风采纳,获得10
3秒前
倔强的大萝卜完成签到 ,获得积分0
3秒前
达进发布了新的文献求助10
4秒前
陆晓亦完成签到,获得积分10
5秒前
roger发布了新的文献求助10
5秒前
Fiona完成签到 ,获得积分10
8秒前
科研通AI5应助Gakay采纳,获得10
9秒前
桥豆麻袋应助flippeed采纳,获得10
9秒前
Guojingyu发布了新的文献求助30
9秒前
zhaoying完成签到,获得积分10
11秒前
13秒前
小杨爱吃羊完成签到 ,获得积分10
13秒前
T拐拐发布了新的文献求助20
13秒前
听风完成签到,获得积分10
13秒前
天天快乐应助达进采纳,获得10
14秒前
小栩完成签到 ,获得积分10
14秒前
小王完成签到,获得积分10
16秒前
谨慎达完成签到 ,获得积分10
17秒前
无花果应助小赵sci采纳,获得10
17秒前
Guojingyu完成签到,获得积分10
18秒前
18秒前
roger完成签到,获得积分10
19秒前
聪明静柏完成签到 ,获得积分10
21秒前
长风发布了新的文献求助10
21秒前
完美妙海发布了新的文献求助10
22秒前
林夕完成签到,获得积分10
22秒前
贪玩手链完成签到 ,获得积分10
23秒前
小贾baby关注了科研通微信公众号
23秒前
24秒前
heihei完成签到,获得积分10
26秒前
熠熠完成签到,获得积分10
28秒前
28秒前
充电宝应助谦让雨珍采纳,获得10
29秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330869
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763743