MIDAS: a practical Bayesian design for platform trials with molecularly targeted agents

计算机科学 协议(科学) 贝叶斯概率 临床试验 机器学习 选择(遗传算法) 人工智能 医学 病理 替代医学
作者
Ying Yuan,Beibei Guo,Mark F. Munsell,Karen H. Lu,Amir A. Jazaeri
出处
期刊:Statistics in Medicine [Wiley]
卷期号:35 (22): 3892-3906 被引量:39
标识
DOI:10.1002/sim.6971
摘要

Recent success of immunotherapy and other targeted therapies in cancer treatment has led to an unprecedented surge in the number of novel therapeutic agents that need to be evaluated in clinical trials. Traditional phase II clinical trial designs were developed for evaluating one candidate treatment at a time and thus not efficient for this task. We propose a Bayesian phase II platform design, the multi‐candidate iterative design with adaptive selection (MIDAS), which allows investigators to continuously screen a large number of candidate agents in an efficient and seamless fashion. MIDAS consists of one control arm, which contains a standard therapy as the control, and several experimental arms, which contain the experimental agents. Patients are adaptively randomized to the control and experimental agents based on their estimated efficacy. During the trial, we adaptively drop inefficacious or overly toxic agents and ‘graduate’ the promising agents from the trial to the next stage of development. Whenever an experimental agent graduates or is dropped, the corresponding arm opens immediately for testing the next available new agent. Simulation studies show that MIDAS substantially outperforms the conventional approach. The proposed design yields a significantly higher probability for identifying the promising agents and dropping the futile agents. In addition, MIDAS requires only one master protocol, which streamlines trial conduct and substantially decreases the overhead burden. Copyright © 2016 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho发布了新的文献求助10
刚刚
Kypsi发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
跳跃的冷雁完成签到,获得积分10
2秒前
打打应助忧伤的觅珍采纳,获得10
2秒前
殷勤的若之完成签到,获得积分10
2秒前
2秒前
传奇3应助结实的山菡采纳,获得10
2秒前
西西发布了新的文献求助10
3秒前
3秒前
深情安青应助newgeno2003采纳,获得10
4秒前
Orange应助鲸鱼姐姐采纳,获得10
4秒前
刘欢发布了新的文献求助10
5秒前
5秒前
明理半山发布了新的文献求助10
5秒前
bkagyin应助隐形皮卡丘采纳,获得10
6秒前
哆啦梦发布了新的文献求助10
6秒前
All发布了新的文献求助10
7秒前
7秒前
曾子牧发布了新的文献求助10
7秒前
8秒前
8秒前
0099发布了新的文献求助10
9秒前
wanci应助zuo采纳,获得10
9秒前
RNNNLL发布了新的文献求助10
9秒前
cstkd1发布了新的文献求助30
9秒前
9秒前
wanci应助科研民工采纳,获得10
9秒前
chun123发布了新的文献求助10
9秒前
Milou发布了新的文献求助10
11秒前
11秒前
12秒前
热心火车发布了新的文献求助10
13秒前
天真不乐给天真不乐的求助进行了留言
13秒前
13秒前
14秒前
哭泣嵩发布了新的文献求助10
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Mechanochemistry of Solid Surfaces 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806711
求助须知:如何正确求助?哪些是违规求助? 3351419
关于积分的说明 10354020
捐赠科研通 3067233
什么是DOI,文献DOI怎么找? 1684428
邀请新用户注册赠送积分活动 809655
科研通“疑难数据库(出版商)”最低求助积分说明 765568