Multimodal Data Analysis of Alzheimer's Disease Based on Clustering Evolutionary Random Forest

随机森林 计算机科学 聚类分析 人工智能 层次聚类 特征选择 决策树 特征(语言学) 数据挖掘 机器学习 模式识别(心理学) 语言学 哲学
作者
Xia-an Bi,Xi Hu,Hao Wu,Yan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (10): 2973-2983 被引量:73
标识
DOI:10.1109/jbhi.2020.2973324
摘要

Alzheimer's disease (AD) has become a severe medical challenge. Advances in technologies produced high-dimensional data of different modalities including functional magnetic resonance imaging (fMRI) and single nucleotide polymorphism (SNP). Understanding the complex association patterns among these heterogeneous and complementary data is of benefit to the diagnosis and prevention of AD. In this paper, we apply the appropriate correlation analysis method to detect the relationships between brain regions and genes, and propose “brain region-gene pairs” as the multimodal features of the sample. In addition, we put forward a novel data analysis method from technology aspect, cluster evolutionary random forest (CERF), which is suitable for “brain region-gene pairs”. The idea of clustering evolution is introduced to improve the generalization performance of random forest which is constructed by randomly selecting samples and sample features. Through hierarchical clustering of decision trees in random forest, the decision trees with higher similarity are clustered into one class, and the decision trees with the best performance are retained to enhance the diversity between decision trees. Furthermore, based on CERF, we integrate feature construction, feature selection and sample classification to find the optimal combination of different methods, and design a comprehensive diagnostic framework for AD. The framework is validated by the samples with both fMRI and SNP data from ADNI. The results show that we can effectively identify AD patients and discover some brain regions and genes associated with AD significantly based on this framework. These findings are conducive to the clinical treatment and prevention of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiixix应助jgpiao采纳,获得10
2秒前
CodeCraft应助含蓄的赛君采纳,获得30
2秒前
jenningseastera应助hutu采纳,获得10
2秒前
Michael发布了新的文献求助10
4秒前
烟花应助VDC采纳,获得10
4秒前
在水一方应助斯文的从彤采纳,获得10
5秒前
开心重要完成签到,获得积分20
6秒前
6秒前
汉堡包应助爱吃肥牛采纳,获得10
6秒前
领导范儿应助聪明的傲白采纳,获得10
7秒前
7秒前
feng完成签到,获得积分10
7秒前
kkkkkkkkkkk完成签到,获得积分10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得50
8秒前
务实的焦发布了新的文献求助10
8秒前
科研通AI5应助ww采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
LSX应助科研通管家采纳,获得10
8秒前
开心重要发布了新的文献求助10
9秒前
搜集达人应助晚云烟月采纳,获得10
10秒前
大个应助月如钩采纳,获得10
10秒前
10秒前
妮妮完成签到,获得积分10
10秒前
情怀应助王宇采纳,获得10
10秒前
勤劳菠萝发布了新的文献求助10
11秒前
amor完成签到,获得积分10
12秒前
12秒前
gc发布了新的文献求助10
12秒前
善学以致用应助xiaojie2024采纳,获得10
13秒前
肚子圆圆的完成签到 ,获得积分10
13秒前
ZS发布了新的文献求助30
13秒前
14秒前
baolong发布了新的文献求助10
15秒前
奋斗夏旋完成签到,获得积分10
16秒前
故意的小熊猫完成签到 ,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790712
求助须知:如何正确求助?哪些是违规求助? 3335592
关于积分的说明 10275421
捐赠科研通 3052056
什么是DOI,文献DOI怎么找? 1674986
邀请新用户注册赠送积分活动 803005
科研通“疑难数据库(出版商)”最低求助积分说明 761007