清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Robust and Adaptive Optimal Control Methods for a Hybrid Neuroprosthesis

神经假体 功能性电刺激 外骨骼 康复工程 计算机科学 动力外骨骼 控制器(灌溉) 控制理论(社会学) 模型预测控制 自适应控制 控制工程 工程类 控制(管理) 物理医学与康复 模拟 康复 人工智能 医学 物理疗法 刺激 内科学 农学 生物
作者
Xuefeng Bao
链接
摘要

Functional electrical stimulation (FES) is an external application of electrical pulses to skeletal muscles to produce desired limb movements. It is prescribed as a rehabilitation intervention to restore standing and walking functions in people with paraplegia. However, its clinical implementation is hindered by a rapid onset of muscle fatigue that limits its use for longer durations. To overcome the FES-induced muscle fatigue, hybrid neuroprostheses that combine FES with powered exoskeletons were proposed recently. However, how to coordinate FES and powered exoskeleton in a hybrid neuroprosthesis still remains an open issue. The long-term goal of this research is to develop control methods that can optimally coordinate FES and the powered exoskeleton by considering muscle fatigue dynamics during standing and walking activities. The research objective in this dissertation was to derive robust and adaptive optimal control methods for two hybrid neuroprostheses: a hybrid leg extension machine (HLEM) and a full lower-body neuroprosthesis (FLBN). Firstly, a model predictive control (MPC) method that coordinates FES and an electric motor in the HLEM is developed. However, due to inaccurate system identification, day-today variations in the model, and partially measurable state, it is challenging to implement this method in a clinical setting. Therefore, robust and adaptive versions of the MPC method were derived. To overcome modeling uncertainties, a tube-based robust MPC was derived. This MPC has a feedback controller that can drive the actual state into a region centered by the nominal state. This ensures recursive feasibility and stability despite disturbances. Later, a recurrent neural network (RNN) was developed to capture the non-autonomous behavior in the musculoskeletal system, and then a nonlinear MPC and a reinforcement learning (RL) method were derived to sub-optimally compute the control actions for the system. To achieve a standing-up motion, a ratio-allocation method was developed to determine the ratio of the FES-induced torque to the motor torque at the knee joint. The dynamically varied estimated muscle fatigue was used as an index that guided the optimal allocation. Experiments were performed to validate the robust and adaptive methods. The results show a potential of the proposed methods for clinical implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanssw完成签到 ,获得积分10
4秒前
小白兔完成签到 ,获得积分10
9秒前
TY完成签到 ,获得积分10
10秒前
16秒前
JJ完成签到 ,获得积分10
18秒前
张宁波完成签到,获得积分10
24秒前
淞33完成签到 ,获得积分10
26秒前
双眼皮跳蚤完成签到,获得积分10
29秒前
不安的白昼完成签到 ,获得积分10
38秒前
喻紫寒完成签到 ,获得积分20
40秒前
fev123完成签到,获得积分10
53秒前
58秒前
1分钟前
番茄小超人2号完成签到 ,获得积分10
1分钟前
早睡早起完成签到 ,获得积分10
1分钟前
似水流年完成签到 ,获得积分10
1分钟前
Solar energy完成签到,获得积分10
1分钟前
十二完成签到 ,获得积分10
1分钟前
xiaoblue完成签到,获得积分10
1分钟前
1分钟前
雷寒云发布了新的文献求助10
1分钟前
科科通通完成签到,获得积分10
1分钟前
shin发布了新的文献求助10
1分钟前
Joaquin完成签到,获得积分10
1分钟前
Doris完成签到 ,获得积分10
1分钟前
Fanfan完成签到 ,获得积分10
1分钟前
满意涵梅完成签到 ,获得积分10
1分钟前
传奇3应助shin采纳,获得10
1分钟前
JY完成签到 ,获得积分10
1分钟前
土拨鼠完成签到 ,获得积分10
1分钟前
Alan完成签到 ,获得积分10
1分钟前
轴承完成签到 ,获得积分10
1分钟前
橙汁摇一摇完成签到 ,获得积分10
1分钟前
俊逸的白梦完成签到 ,获得积分0
2分钟前
Hiram完成签到,获得积分10
2分钟前
如意的馒头完成签到 ,获得积分10
2分钟前
不知道完成签到,获得积分10
2分钟前
想睡觉的小笼包完成签到 ,获得积分10
2分钟前
舒适的涑完成签到 ,获得积分10
2分钟前
赧赧完成签到 ,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788347
求助须知:如何正确求助?哪些是违规求助? 3333714
关于积分的说明 10263216
捐赠科研通 3049616
什么是DOI,文献DOI怎么找? 1673639
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511