Harnessing big ‘omics’ data and AI for drug discovery in hepatocellular carcinoma

索拉非尼 医学 无容量 瑞戈非尼 催眠药 彭布罗利珠单抗 卡波扎尼布 伦瓦提尼 临床试验 免疫检查点 生物信息学 药物发现 生物标志物发现 肝细胞癌 计算生物学 蛋白质组学 癌症 免疫疗法 内科学 生物 结直肠癌 基因 生物化学
作者
Bin Chen,Lana X. Garmire,Diego F. Calvisi,Mei‐Sze Chua,Robin Kate Kelley,Xin Chen
出处
期刊:Nature Reviews Gastroenterology & Hepatology [Nature Portfolio]
卷期号:17 (4): 238-251 被引量:116
标识
DOI:10.1038/s41575-019-0240-9
摘要

Hepatocellular carcinoma (HCC) is the most common form of primary adult liver cancer. After nearly a decade with sorafenib as the only approved treatment, multiple new agents have demonstrated efficacy in clinical trials, including the targeted therapies regorafenib, lenvatinib and cabozantinib, the anti-angiogenic antibody ramucirumab, and the immune checkpoint inhibitors nivolumab and pembrolizumab. Although these agents offer new promise to patients with HCC, the optimal choice and sequence of therapies remains unknown and without established biomarkers, and many patients do not respond to treatment. The advances and the decreasing costs of molecular measurement technologies enable profiling of HCC molecular features (such as genome, transcriptome, proteome and metabolome) at different levels, including bulk tissues, animal models and single cells. The release of such data sets to the public enhances the ability to search for information from these legacy studies and provides the opportunity to leverage them to understand HCC mechanisms, rationally develop new therapeutics and identify candidate biomarkers of treatment response. Here, we provide a comprehensive review of public data sets related to HCC and discuss how emerging artificial intelligence methods can be applied to identify new targets and drugs as well as to guide therapeutic choices for improved HCC treatment. Several big data ‘omics’ studies have analysed hepatocellular carcinoma (HCC). This Review describes omics studies in HCC and their potential in drug discovery and as candidate biomarkers. The application of emerging new artificial intelligence methods in HCC drug discovery is also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wen发布了新的文献求助10
刚刚
优雅山柏发布了新的文献求助10
刚刚
大头不秃头完成签到,获得积分10
1秒前
Lee发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
专一的平卉完成签到,获得积分10
3秒前
alexyang发布了新的文献求助10
3秒前
3秒前
万宁发布了新的文献求助10
3秒前
橘子大王发布了新的文献求助10
3秒前
JamesPei应助啵啵采纳,获得10
4秒前
15136780701完成签到 ,获得积分10
4秒前
自信即巅峰完成签到,获得积分10
5秒前
5秒前
6秒前
dengqr5发布了新的文献求助10
7秒前
喜乐发布了新的文献求助10
8秒前
8秒前
精明的期待完成签到,获得积分20
8秒前
9秒前
SYLH应助胖咕噜采纳,获得10
9秒前
科研通AI5应助crowd_lpy采纳,获得10
9秒前
10秒前
10秒前
于沁冉发布了新的文献求助10
11秒前
科研通AI5应助不想学习采纳,获得50
11秒前
11秒前
天堂制造发布了新的文献求助10
12秒前
12秒前
在水一方应助xqq采纳,获得10
13秒前
dengqr5完成签到,获得积分10
13秒前
14秒前
慕青应助包容的灰狼采纳,获得10
14秒前
14秒前
鱼fish发布了新的文献求助10
15秒前
简单的幸福完成签到,获得积分10
15秒前
16秒前
liguilong发布了新的文献求助10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
A monograph of the genera Conocybe and Pholiotina in Europe 200
Clinical Observation and Analysis of Transient Postoperative CA-125 Elevation in a Patient with Sigmoid Colon Adenocarcinoma 200
The direct observation of dislocations 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836735
求助须知:如何正确求助?哪些是违规求助? 3378964
关于积分的说明 10507075
捐赠科研通 3098797
什么是DOI,文献DOI怎么找? 1706621
邀请新用户注册赠送积分活动 821119
科研通“疑难数据库(出版商)”最低求助积分说明 772445