Designing High Performance Organic Batteries

灵活性(工程) 纳米技术 材料科学 商业化 有机自由基电池 锂(药物) 电解质 工艺工程 化学 电极 工程类 物理化学 法学 内分泌学 统计 医学 数学 政治学
作者
Yuan Chen,Chengliang Wang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (11): 2636-2647 被引量:231
标识
DOI:10.1021/acs.accounts.0c00465
摘要

ConspectusRedox active organic and polymeric materials have witnessed the rapid development and commercialization of lithium-ion batteries (LIBs) over the last century and the increasing interest in developing various alternatives to LIBs in the past 30 years. As a kind of potential alternative, organic and polymeric materials have the advantages of flexibility, tunable performance through molecular design, potentially high specific capacity, vast natural resources, and recyclability. However, until now, only a handful inorganic materials have been adopted as electrodes in commercialized LIBs. Although the development of carbonyl-based materials revived organic batteries and stimulated plentiful organic materials for batteries in the past 10 years due to their high theoretical capacities and long-term cycleabilities compared with their pioneers (e.g., conducting polymers), organic batteries are still facing many challenges. For example, it is still essential to enhance the theoretical and experimental capacities of organic materials. Moreover, typically, organic materials suffer relatively low conductivity, which limits their rate capability. In addition, many organic materials, especially small molecules, show poor cycling stability because of their dissolution in organic electrolytes. Other requirements, such as high voltage output and low cost, are also crucial for organic batteries. Therefore, insights into fundamentals (e.g., intramolecular and intermolecular interactions) for a deep understanding of organic batteries and constructive strategies ranging from material design to manipulation of other components (e.g., conductive additives, binders, electrolytes, and separators through controlling the intramolecular and intermolecular interactions and manipulating the ionic transport) are of great significance to boost the performance of organic batteries.In this Account, we give an overview of our efforts to develop high performance organic batteries with various strategies from the aspects of molecular design and the manipulation of other components. Inspired by the experience in organic electronics, we proposed that the extension of the π-conjugated system is helpful for stabilizing the +1/–1 charge/discharge states, improving the charge transport, and facilitating the layered packing (good for ionic diffusion) and hence would benefit the rate capability and cyclability. The π–d conjugation can effectively improve the electrical conductivity and provide stable and fast ionic storage, which enriches the materials for high-performance batteries and further deepens the understanding of conjugated coordination polymers (CCPs). Different from inorganic materials, organic materials are composed of molecules (either small molecules, macromolecules, or polymeric molecules) with weak intermolecular interactions. Therefore, the manipulation of active molecules or additives (conductive additives, binders, and other special additives) through control of intermolecular interactions is crucial for enhancing the electrochemical performance of organic batteries. Regarding the possible dissolution of active materials, the modification of separators through addition of selectively permeable membranes as ionic sieves is the most efficient and universal strategy to mitigate the shuttling of dissolved molecules but allow smaller sized cations to pass and hence is able to enhance the cyclability. On the basis of these findings, the challenges and several future trends for organic batteries are discussed. This Account provides a summary of our recent progress, understanding of the fundamentals for high performance organic batteries, insight into the intramolecular and intermolecular interactions, and prospects for future development of organic materials for next-generation rechargeable batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助傅凡桃采纳,获得10
刚刚
阳光的易真完成签到,获得积分10
1秒前
韭黄发布了新的文献求助10
1秒前
qin完成签到,获得积分10
1秒前
丹青完成签到,获得积分10
1秒前
xu完成签到,获得积分10
2秒前
echo完成签到 ,获得积分10
3秒前
lling完成签到 ,获得积分10
4秒前
风中悟空完成签到 ,获得积分10
5秒前
江酱完成签到,获得积分10
5秒前
淇奥完成签到 ,获得积分10
5秒前
5秒前
大卫戴完成签到 ,获得积分10
7秒前
执着幻桃完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
斯奈克完成签到,获得积分10
8秒前
Jasper应助韭黄采纳,获得10
8秒前
韩寒完成签到 ,获得积分10
9秒前
Xuz完成签到 ,获得积分10
9秒前
Hua完成签到,获得积分10
10秒前
鳗鱼不尤完成签到,获得积分10
11秒前
六沉完成签到 ,获得积分10
11秒前
柯柯完成签到,获得积分10
12秒前
张张留下了新的社区评论
12秒前
mysilicon完成签到,获得积分10
12秒前
贪玩丸子完成签到 ,获得积分10
13秒前
光亮语梦完成签到 ,获得积分10
13秒前
Fiona完成签到 ,获得积分10
14秒前
lsl完成签到,获得积分10
14秒前
yellow完成签到,获得积分10
18秒前
勤奋尔丝完成签到 ,获得积分10
18秒前
研友_Z119gZ完成签到 ,获得积分10
18秒前
研友_X89o6n完成签到,获得积分10
18秒前
HHUMLH完成签到 ,获得积分10
19秒前
张迪完成签到 ,获得积分10
19秒前
22秒前
贤惠的早晨完成签到 ,获得积分10
23秒前
随机游动完成签到,获得积分10
24秒前
韭黄完成签到,获得积分20
24秒前
量子星尘发布了新的文献求助30
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079744
求助须知:如何正确求助?哪些是违规求助? 4297883
关于积分的说明 13389008
捐赠科研通 4121176
什么是DOI,文献DOI怎么找? 2257046
邀请新用户注册赠送积分活动 1261338
关于科研通互助平台的介绍 1195430