Designing High Performance Organic Batteries

灵活性(工程) 纳米技术 材料科学 商业化 有机自由基电池 锂(药物) 电解质 工艺工程 化学 电极 工程类 物理化学 法学 内分泌学 统计 医学 数学 政治学
作者
Yuan Chen,Chengliang Wang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:53 (11): 2636-2647 被引量:240
标识
DOI:10.1021/acs.accounts.0c00465
摘要

ConspectusRedox active organic and polymeric materials have witnessed the rapid development and commercialization of lithium-ion batteries (LIBs) over the last century and the increasing interest in developing various alternatives to LIBs in the past 30 years. As a kind of potential alternative, organic and polymeric materials have the advantages of flexibility, tunable performance through molecular design, potentially high specific capacity, vast natural resources, and recyclability. However, until now, only a handful inorganic materials have been adopted as electrodes in commercialized LIBs. Although the development of carbonyl-based materials revived organic batteries and stimulated plentiful organic materials for batteries in the past 10 years due to their high theoretical capacities and long-term cycleabilities compared with their pioneers (e.g., conducting polymers), organic batteries are still facing many challenges. For example, it is still essential to enhance the theoretical and experimental capacities of organic materials. Moreover, typically, organic materials suffer relatively low conductivity, which limits their rate capability. In addition, many organic materials, especially small molecules, show poor cycling stability because of their dissolution in organic electrolytes. Other requirements, such as high voltage output and low cost, are also crucial for organic batteries. Therefore, insights into fundamentals (e.g., intramolecular and intermolecular interactions) for a deep understanding of organic batteries and constructive strategies ranging from material design to manipulation of other components (e.g., conductive additives, binders, electrolytes, and separators through controlling the intramolecular and intermolecular interactions and manipulating the ionic transport) are of great significance to boost the performance of organic batteries.In this Account, we give an overview of our efforts to develop high performance organic batteries with various strategies from the aspects of molecular design and the manipulation of other components. Inspired by the experience in organic electronics, we proposed that the extension of the π-conjugated system is helpful for stabilizing the +1/-1 charge/discharge states, improving the charge transport, and facilitating the layered packing (good for ionic diffusion) and hence would benefit the rate capability and cyclability. The π-d conjugation can effectively improve the electrical conductivity and provide stable and fast ionic storage, which enriches the materials for high-performance batteries and further deepens the understanding of conjugated coordination polymers (CCPs). Different from inorganic materials, organic materials are composed of molecules (either small molecules, macromolecules, or polymeric molecules) with weak intermolecular interactions. Therefore, the manipulation of active molecules or additives (conductive additives, binders, and other special additives) through control of intermolecular interactions is crucial for enhancing the electrochemical performance of organic batteries. Regarding the possible dissolution of active materials, the modification of separators through addition of selectively permeable membranes as ionic sieves is the most efficient and universal strategy to mitigate the shuttling of dissolved molecules but allow smaller sized cations to pass and hence is able to enhance the cyclability. On the basis of these findings, the challenges and several future trends for organic batteries are discussed. This Account provides a summary of our recent progress, understanding of the fundamentals for high performance organic batteries, insight into the intramolecular and intermolecular interactions, and prospects for future development of organic materials for next-generation rechargeable batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助顺心的玉米采纳,获得10
2秒前
2秒前
2秒前
wang发布了新的文献求助10
2秒前
2秒前
万能图书馆应助华莉变身采纳,获得10
3秒前
今后应助zzznznnn采纳,获得10
3秒前
小马发布了新的文献求助30
3秒前
五原日落发布了新的文献求助10
4秒前
CipherSage应助十六采纳,获得10
5秒前
5秒前
天真百招发布了新的文献求助10
6秒前
yan发布了新的文献求助10
6秒前
善善完成签到 ,获得积分10
7秒前
9秒前
12秒前
小王同学完成签到 ,获得积分10
12秒前
万能图书馆应助LLL采纳,获得10
16秒前
明理冷梅完成签到 ,获得积分10
17秒前
wry完成签到,获得积分10
17秒前
哒哒完成签到,获得积分10
18秒前
jstagey完成签到 ,获得积分10
18秒前
Sylvia41完成签到,获得积分10
19秒前
生动的保温杯完成签到,获得积分10
20秒前
zhangfuchao完成签到,获得积分10
20秒前
20秒前
在水一方应助小线团黑桃采纳,获得10
20秒前
21秒前
醉眠完成签到 ,获得积分10
21秒前
23秒前
lglsp发布了新的文献求助10
23秒前
脑洞疼应助xuanjiawu采纳,获得10
23秒前
24秒前
晫猗完成签到,获得积分10
24秒前
24秒前
meng完成签到,获得积分10
25秒前
zzznznnn发布了新的文献求助10
26秒前
伶俐怀亦发布了新的文献求助10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604106
求助须知:如何正确求助?哪些是违规求助? 4688956
关于积分的说明 14857141
捐赠科研通 4696700
什么是DOI,文献DOI怎么找? 2541175
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851