Cloud–Edge-Based Lightweight Temporal Convolutional Networks for Remaining Useful Life Prediction in IIoT

云计算 计算机科学 边缘计算 大数据 GSM演进的增强数据速率 工业互联网 边缘设备 人工智能 领域(数学) 分布式计算 物联网 数据挖掘 计算机安全 操作系统 数学 纯数学
作者
Lei Ren,Yuxin Liu,Xiaokang Wang,Jinhu Lü,M. Jamal Deen
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (16): 12578-12587 被引量:113
标识
DOI:10.1109/jiot.2020.3008170
摘要

Industrial Internet of Things (IIoT), as an important industrial branch of the Internet of Things (IoT), has an essential purpose to improve intelligent industrial production. For this purpose, IIoT big data should be efficiently processed to mine valuable information. In handing the IIoT big data, cloud-edge computing is getting more attention to reduce the interaction latency to meet the real-time requirement, especially in the field of prognostic and health management (PHM). It is expected that artificial intelligence (AI) technologies will significantly change the manner of processing IIoT big data. Therefore, new methods about PHM, combining cloud-edge computing with AI technologies, are required to process the IIoT big data for intelligent industrial manufacturing. As an essential element of PHM, predicting the remaining useful life (RUL) of industrial equipment plays an increasingly crucial role, especially for industrial intelligence. However, traditional methods pay much attention on prediction accuracy and neglect the influence of computing time. In this article, by combining cloud-edge computing with AI technology, a new data-driven method, namely, cloud-edge-based lightweight temporal convolutional networks (LTCNs), for RUL prediction is proposed. First, to meet the real-time requirement, a cloud-edge computing and AI-based framework for RUL prediction is presented. Second, a new model structure named LTCN is proposed and applied in the framework. Real-time prediction results will be obtained in the edge plane and higher accuracy prediction results will be obtained through historical information in the cloud plane. Third, an incremental learning approach based on updating partial parameters of LTCN is discussed to improve the accuracy of prediction models with newly collected data. Experiments show that our method can improve the prediction accuracy and reduce the computational time of RUL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待八宝粥完成签到,获得积分10
2秒前
wang完成签到,获得积分10
3秒前
Orange应助小也采纳,获得10
3秒前
Owen应助VDC采纳,获得10
7秒前
JamesPei应助小泓采纳,获得10
13秒前
十三完成签到,获得积分10
20秒前
FXT完成签到 ,获得积分10
21秒前
小林发布了新的文献求助10
27秒前
yaya完成签到 ,获得积分10
30秒前
31秒前
31秒前
ZY完成签到 ,获得积分10
35秒前
暮晓见完成签到 ,获得积分10
36秒前
马甲发布了新的文献求助10
36秒前
VDC发布了新的文献求助10
37秒前
小林完成签到,获得积分10
37秒前
名丿完成签到,获得积分10
38秒前
布毁黑完成签到 ,获得积分10
42秒前
HOPE发布了新的文献求助10
43秒前
李冰洋完成签到,获得积分10
50秒前
所所应助Shandongdaxiu采纳,获得10
52秒前
左登峰完成签到,获得积分10
53秒前
Jro完成签到,获得积分10
1分钟前
科研通AI5应助科研小白采纳,获得10
1分钟前
1分钟前
allegiance完成签到 ,获得积分10
1分钟前
guohong完成签到 ,获得积分10
1分钟前
1分钟前
眼睛大又蓝完成签到,获得积分10
1分钟前
李向东发布了新的文献求助10
1分钟前
小四喜发布了新的文献求助10
1分钟前
科研通AI5应助李向东采纳,获得10
1分钟前
成就莞完成签到,获得积分10
1分钟前
大气的乌冬面完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI5应助sheila采纳,获得10
1分钟前
CipherSage应助Alex采纳,获得10
1分钟前
Owen应助shuyu采纳,获得10
1分钟前
算不尽发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781287
求助须知:如何正确求助?哪些是违规求助? 3326814
关于积分的说明 10228352
捐赠科研通 3041803
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751