Ab initio study of intrinsic point defects in germanium sulfide

从头算 硫化物 材料科学 从头算量子化学方法 化学物理 化学 凝聚态物理 计算化学 结晶学 物理 光电子学 冶金 分子 有机化学
作者
Neeraj Mishra,Guy Makov
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:914: 165389-165389 被引量:4
标识
DOI:10.1016/j.jallcom.2022.165389
摘要

The energetic and electronic properties of intrinsic point defects in germanium sulfide (GeS) were studied using first-principles methods. Point defects including single-site (e.g., vacancies, interstitials, and anitisites) and double-site defects (e.g., Schottky defects, Frenkel pairs) were considered. It was found that the lowest formation energy for neutral defects is associated with the Schottky dimer (SD), independent of chemical potentials of the species, and not with vacancies, as previously reported for similar materials like GeSe, SnS and SnSe. Furthermore, SD were studied in these similar materials and found to be energetically more stable than neutral vacancies for GeSe and similarly stable to Sn vacancy defects in SnS and SnSe. Charged states of the defects were considered and found to be energetically preferred over neutral defects. On allowing the defects to charge, Ge2- vacancy (VGe−2) defects were found to be the most stable defects in both Ge-rich and Ge-poor environments; consistent with the experimentally reported nonstoichiometric nature of GeS. Negative formation energies were obtained for Ge vacancies, in both environmental conditions, and thus they are expected to form spontaneously. The electronic structure was affected by the incorporation of point defects. For Ge vacancies, the Fermi level shifted below the valence band maxima (VBM), indicating p-type conductivity in agreement with experimental observations. S vacancies introduced occupied defect states and hybridized with VBM, and the fundamental bandgap was retained, indicating no preferential conductivity. The possibility of doping GeS to obtain n-type conductivity was explored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maochu发布了新的文献求助10
1秒前
清秀送终发布了新的文献求助10
1秒前
GAO完成签到,获得积分10
1秒前
2秒前
2秒前
慕青应助扶溪筠采纳,获得10
2秒前
万能图书馆应助大喜子采纳,获得10
2秒前
李健应助yeyeye采纳,获得10
2秒前
3秒前
3秒前
悦耳羽毛完成签到,获得积分10
3秒前
11发布了新的文献求助10
3秒前
3秒前
顺顺发布了新的文献求助10
5秒前
打打应助研友_nV2pkn采纳,获得10
5秒前
在水一方应助禾沐采纳,获得10
5秒前
ri_290完成签到,获得积分10
5秒前
爆米花应助彤彤万事通采纳,获得10
7秒前
7秒前
俭朴夜雪完成签到,获得积分10
7秒前
诚心冬亦发布了新的文献求助10
7秒前
期刊应助xuan采纳,获得10
8秒前
打打应助奋斗呀采纳,获得10
8秒前
大壮发布了新的文献求助10
8秒前
沈沈沈屹西完成签到,获得积分10
8秒前
kjding完成签到,获得积分10
9秒前
lily完成签到,获得积分10
9秒前
平常的可乐完成签到 ,获得积分10
9秒前
羞答答完成签到,获得积分10
10秒前
11秒前
文艺书芹发布了新的文献求助10
12秒前
xy发布了新的文献求助10
12秒前
奥特曼发布了新的文献求助10
13秒前
马马马完成签到,获得积分10
13秒前
14秒前
科研通AI5应助忧伤的丁丁采纳,获得30
15秒前
研友_VZG7GZ应助Ywd采纳,获得10
16秒前
17秒前
18秒前
1212发布了新的文献求助10
18秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835693
求助须知:如何正确求助?哪些是违规求助? 3378029
关于积分的说明 10501900
捐赠科研通 3097669
什么是DOI,文献DOI怎么找? 1705937
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772260