Machine Learning Application in a Phase I Clinical Trial Allows for the Identification of Clinical‐Biomolecular Markers Significantly Associated With Toxicity

伊立替康 临床试验 医学 叶酸 贝伐单抗 样本量测定 内科学 肿瘤科 机器学习 结直肠癌 癌症 计算机科学 统计 数学 化疗
作者
Luca Bedon,Erika Cecchin,Emanuele Fabbiani,Michele Dal Bo,Angela Buonadonna,Maurizio Polano,Giuseppe Toffoli
出处
期刊:Clinical Pharmacology & Therapeutics [Wiley]
卷期号:111 (3): 686-696 被引量:15
标识
DOI:10.1002/cpt.2511
摘要

Machine learning (ML) algorithms have been used to forecast clinical outcomes or drug adverse effects by analyzing different data sets such as electronic health records, diagnostic data, and molecular data. However, ML implementation in phase I clinical trial is still an unexplored strategy that implies challenges such as the selection of the best development strategy when dealing with limited sample size. In the attempt to better define prechemotherapy baseline clinical and biomolecular predictors of drug toxicity, we trained and compared five ML algorithms starting from clinical, blood biochemistry, and genotype data derived from a previous phase Ib study aimed to define the maximum tolerated dose of irinotecan (FOLFIRI (folinic acid, fluorouracil, and irinotecan) plus bevacizumab regimen) in patients with metastatic colorectal cancer. During cross‐validation the Random Forest algorithm achieved the best performance with a mean Matthews correlation coefficient of 0.549 and a mean accuracy of 80.4%; the best predictors of dose‐limiting toxicity at baseline were hemoglobin, serum glutamic oxaloacetic transaminase (SGOT), and albumin. The feasibility of a prediction model prototype was in principle assessed using the two distinct dose escalation cohorts, where in the validation cohort the model scored a Matthews correlation coefficient of 0.59 and an accuracy of 82.0%. Moreover, we found a strong relationship between SGOT and irinotecan pharmacokinetics, suggesting its role as surrogates’ estimators of the irinotecan metabolism equilibrium. In conclusion, the potential application of ML techniques to phase I study could provide clinicians with early prediction tools useful both to ameliorate the management of clinical trials and to make more adequate treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助不见高山采纳,获得10
1秒前
1秒前
Fyf333发布了新的文献求助10
2秒前
2秒前
111完成签到,获得积分10
3秒前
3秒前
zzj-zjut完成签到,获得积分20
3秒前
777完成签到,获得积分10
3秒前
Yhcir完成签到,获得积分10
4秒前
Ying完成签到,获得积分20
4秒前
4秒前
ResH应助小王采纳,获得10
5秒前
阿明完成签到,获得积分10
6秒前
你好发布了新的文献求助10
6秒前
NexusExplorer应助regina采纳,获得10
6秒前
puppy发布了新的文献求助10
6秒前
nikonikoni完成签到,获得积分10
7秒前
深情安青应助wwwteng呀采纳,获得30
7秒前
666完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
七七发布了新的文献求助10
9秒前
斯文败类应助追寻的若之采纳,获得10
9秒前
10秒前
11秒前
11秒前
负责雨安完成签到,获得积分10
12秒前
12秒前
13秒前
lilili应助CHBW采纳,获得10
13秒前
广发牛勿发布了新的文献求助10
13秒前
杨旭发布了新的文献求助10
14秒前
14秒前
吴下阿萌完成签到 ,获得积分10
15秒前
15秒前
科研通AI5应助曾馨慧采纳,获得10
15秒前
Yhcir发布了新的文献求助10
15秒前
16秒前
天天天蓝完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4992489
求助须知:如何正确求助?哪些是违规求助? 4240568
关于积分的说明 13211466
捐赠科研通 4035698
什么是DOI,文献DOI怎么找? 2208071
邀请新用户注册赠送积分活动 1219060
关于科研通互助平台的介绍 1137317