Two density-based sampling approaches for imbalanced and overlapping data

欠采样 过采样 计算机科学 机器学习 人工智能 算法 噪音(视频) 班级(哲学) 采样(信号处理) 数据挖掘 随机森林 支持向量机 模式识别(心理学) 图像(数学) 滤波器(信号处理) 计算机视觉 计算机网络 带宽(计算)
作者
Sima Mayabadi,Hamid Saadatfar
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:241: 108217-108217 被引量:40
标识
DOI:10.1016/j.knosys.2022.108217
摘要

An imbalanced dataset consists of a majority class and a minority class, where the former’s sample size is substantially larger than other classes. This difference disrupts the data learning process and drives the learning algorithms into modeling the majority class. Data overlap can exacerbate the complicated problem of imbalanced datasets, a problem for which oversampling and undersampling approaches are adopted. This paper proposes two novel density-based algorithms in order to eliminate the overlap between two classes and the noise, as well as creating balance and normalizing the class distribution. The first algorithm employs an undersampling technique, whereas the second one uses undersampling and oversampling techniques simultaneously. These two algorithms delete high-density samples from the majority class and eliminate the noises in both classes. The two proposed algorithms and other popular algorithms were run on 16 imbalanced datasets that included a variety of scenarios. The datasets balanced by these algorithms were then modeled through Random Forest, and SVM classifiers. The models obtained from the two proposed algorithms outperformed the other algorithms in all criteria. These models also achieved a balance by maximum maintenance of the class structure and form, which protects the quality of learning from any detriment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HJJHJH应助zhaoling0503采纳,获得30
1秒前
yy完成签到 ,获得积分10
1秒前
库里晚安完成签到,获得积分10
2秒前
2秒前
111发布了新的文献求助10
2秒前
紧张的店员完成签到,获得积分10
2秒前
荻野千寻发布了新的文献求助10
2秒前
sibo完成签到,获得积分10
3秒前
合适的孤菱发布了新的文献求助150
3秒前
孙勇发完成签到,获得积分10
4秒前
大模型应助whoami采纳,获得10
4秒前
席谷兰完成签到 ,获得积分10
4秒前
4秒前
安静的嘉懿完成签到,获得积分10
5秒前
王萌茹完成签到,获得积分10
5秒前
善学以致用应助weiii采纳,获得10
5秒前
大个应助Neal采纳,获得10
6秒前
6秒前
6秒前
研友_VZG7GZ应助专注的苠采纳,获得10
6秒前
Yimi发布了新的文献求助10
6秒前
Yuling完成签到,获得积分10
7秒前
神勇面包完成签到,获得积分10
7秒前
oasis完成签到,获得积分10
7秒前
烤冷面发布了新的文献求助30
7秒前
锤锤完成签到 ,获得积分10
7秒前
无事小神仙完成签到 ,获得积分10
7秒前
SMZ应助zhonglv7采纳,获得10
7秒前
321完成签到,获得积分10
7秒前
弥生妖刀发布了新的文献求助10
7秒前
姜昊彤完成签到,获得积分10
7秒前
田様应助高高的冰旋采纳,获得10
8秒前
8秒前
orixero应助黄燕采纳,获得10
8秒前
Ava应助stoic采纳,获得10
8秒前
999完成签到,获得积分10
8秒前
Roy完成签到,获得积分10
8秒前
小马甲应助小亦雪采纳,获得10
8秒前
sisi完成签到,获得积分10
8秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5700730
求助须知:如何正确求助?哪些是违规求助? 5140373
关于积分的说明 15231782
捐赠科研通 4855900
什么是DOI,文献DOI怎么找? 2605520
邀请新用户注册赠送积分活动 1556868
关于科研通互助平台的介绍 1514960