差异进化
JADE(粒子探测器)
粒子群优化
计算机科学
稳健性(进化)
水准点(测量)
进化计算
一般化
人口
进化算法
趋同(经济学)
集合(抽象数据类型)
算法
数学优化
数据挖掘
人工智能
数学
物理
地理
程序设计语言
化学
数学分析
经济
人口学
社会学
粒子物理学
基因
生物化学
经济增长
大地测量学
作者
Jingqiao Zhang,Arthur C. Sanderson
标识
DOI:10.1109/tevc.2009.2014613
摘要
A new differential evolution (DE) algorithm, JADE, is proposed to improve optimization performance by implementing a new mutation strategy ldquoDE/current-to- p bestrdquo with optional external archive and updating control parameters in an adaptive manner. The DE/current-to- p best is a generalization of the classic ldquoDE/current-to-best,rdquo while the optional archive operation utilizes historical data to provide information of progress direction. Both operations diversify the population and improve the convergence performance. The parameter adaptation automatically updates the control parameters to appropriate values and avoids a user's prior knowledge of the relationship between the parameter settings and the characteristics of optimization problems. It is thus helpful to improve the robustness of the algorithm. Simulation results show that JADE is better than, or at least comparable to, other classic or adaptive DE algorithms, the canonical particle swarm optimization, and other evolutionary algorithms from the literature in terms of convergence performance for a set of 20 benchmark problems. JADE with an external archive shows promising results for relatively high dimensional problems. In addition, it clearly shows that there is no fixed control parameter setting suitable for various problems or even at different optimization stages of a single problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI