Research on Feature Extracted Method for Flutter Test Based on EMD and CNN

颤振 气动弹性 希尔伯特-黄变换 特征提取 人工智能 模式识别(心理学) 信号(编程语言) 频域 计算机科学 特征(语言学) 卷积(计算机科学) 风洞 时域 工程类 深度学习 空气动力学 人工神经网络 计算机视觉 语言学 哲学 滤波器(信号处理) 程序设计语言 航空航天工程
作者
Hua Zheng,Zhenglong Wu,Shiqiang Duan,Jiangtao Zhou
出处
期刊:International Journal of Aerospace Engineering [Hindawi Publishing Corporation]
卷期号:2021: 1-10 被引量:7
标识
DOI:10.1155/2021/6620368
摘要

Due to the inevitable deviations between the results of theoretical calculations and physical experiments, flutter tests and flutter signal analysis often play significant roles in designing the aeroelasticity of a new aircraft. The measured structural response from aeroelastic models in both wind tunnel tests and real fight flutter tests contain an abundance of structural information, but traditional methods tend to have limited ability to extract features of concern. Inspired by deep learning concepts, a novel feature extraction method for flutter signal analysis was established in this study by combining the convolutional neural network (CNN) with empirical mode decomposition (EMD). It is widely hypothesized that when flutter occurs, the measured structural signals are harmonic or divergent in the time domain, and that the flutter modal (1) is singular and (2) its energy increases significantly in the frequency domain. A measured-signal feature extraction and flutter criterion framework was constructed accordingly. The measured signals from a wind tunnel test were manually labeled “flutter” and “no-flutter” as the foundational dataset for the deep learning algorithm. After the normalized preprocessing, the intrinsic mode functions (IMFs) of the flutter test signals are obtained by the EMD method. The IMFs are then reshaped to make them the suitable size to be input to the CNN. The CNN parameters are optimized though the training dataset, and the trained model is validated through the test dataset (i.e., cross-validation). The accuracy rate of the proposed method reached 100% on the test dataset. The training model appears to effectively distinguish whether or not the structural response signal contains flutter. The combination of EMD and CNN provides effective feature extraction of time series signals in flutter test data. This research explores the connection between structural response signals and flutter from the perspective of artificial intelligence. The method allows for real-time, online prediction with low computational complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助Dye采纳,获得10
1秒前
RolfHoward完成签到,获得积分10
2秒前
NANA发布了新的文献求助10
4秒前
小木得霖发布了新的文献求助10
4秒前
金多贤完成签到,获得积分10
4秒前
5秒前
5秒前
朝花夕拾完成签到,获得积分10
6秒前
7秒前
yetta发布了新的文献求助30
9秒前
9秒前
金多贤发布了新的文献求助10
10秒前
鳗鱼凡波发布了新的文献求助10
10秒前
10秒前
11秒前
12完成签到,获得积分10
16秒前
顾矜应助懒洋洋tzy采纳,获得10
17秒前
19秒前
科研通AI5应助朴素海亦采纳,获得10
19秒前
HtheJ完成签到,获得积分10
19秒前
小木得霖完成签到,获得积分10
21秒前
22秒前
25秒前
25秒前
fish完成签到,获得积分10
27秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
youngcy发布了新的文献求助10
28秒前
852应助shenerqing采纳,获得10
28秒前
易大人发布了新的文献求助10
28秒前
智守奇安完成签到,获得积分10
29秒前
31秒前
31秒前
代上渝发布了新的文献求助10
31秒前
LeeYoonKang完成签到,获得积分10
33秒前
33秒前
小德德万岁完成签到,获得积分20
34秒前
34秒前
鳗鱼凡波发布了新的文献求助10
35秒前
研友_8RlG1n发布了新的文献求助10
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 880
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4202381
求助须知:如何正确求助?哪些是违规求助? 3737105
关于积分的说明 11767396
捐赠科研通 3409472
什么是DOI,文献DOI怎么找? 1870655
邀请新用户注册赠送积分活动 926214
科研通“疑难数据库(出版商)”最低求助积分说明 836470