Adversarial Reciprocal Points Learning for Open Set Recognition

边距(机器学习) 人工智能 计算机科学 机器学习 互惠的 班级(哲学) 开放集 水准点(测量) 集合(抽象数据类型) 对抗制 点(几何) 空格(标点符号) 模式识别(心理学) 数学 哲学 离散数学 操作系统 语言学 程序设计语言 地理 大地测量学 几何学
作者
Guangyao Chen,Peixi Peng,Xiangqian Wang,Yonghong Tian
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:189
标识
DOI:10.1109/tpami.2021.3106743
摘要

Open set recognition (OSR), aiming to simultaneously classify the seen classes and identify the unseen classes as 'unknown', is essential for reliable machine learning.The key challenge of OSR is how to reduce the empirical classification risk on the labeled known data and the open space risk on the potential unknown data simultaneously. To handle the challenge, we formulate the open space risk problem from the perspective of multi-class integration, and model the unexploited extra-class space with a novel concept Reciprocal Point. Follow this, a novel learning framework, termed Adversarial Reciprocal Point Learning (ARPL), is proposed to minimize the overlap of known distribution and unknown distributions without loss of known classification accuracy. Specifically, each reciprocal point is learned by the extra-class space with the corresponding known category, and the confrontation among multiple known categories are employed to reduce the empirical classification risk. Then, an adversarial margin constraint is proposed to reduce the open space risk by limiting the latent open space constructed by reciprocal points. To further estimate the unknown distribution from open space, an instantiated adversarial enhancement method is designed to generate diverse and confusing training samples, based on the adversarial mechanism between the reciprocal points and known classes. This can effectively enhance the model distinguishability to the unknown classes. Extensive experimental results on various benchmark datasets indicate that the proposed method is significantly superior to other existing approaches and achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mc完成签到 ,获得积分10
1秒前
甜甜友容完成签到,获得积分10
2秒前
科研小白完成签到 ,获得积分10
4秒前
科研通AI5应助吴开心采纳,获得10
5秒前
帆帆帆完成签到 ,获得积分10
8秒前
鱼圆杂铺完成签到,获得积分10
9秒前
十七完成签到 ,获得积分10
10秒前
小不溜完成签到 ,获得积分10
15秒前
Friday完成签到,获得积分10
15秒前
思源应助dochx采纳,获得10
17秒前
17秒前
上官若男应助sssddd采纳,获得10
18秒前
欣慰问凝完成签到 ,获得积分10
20秒前
sadascaqwqw完成签到,获得积分10
22秒前
ZSJ完成签到,获得积分10
22秒前
吴开心发布了新的文献求助10
23秒前
Umar完成签到,获得积分10
24秒前
26秒前
海人完成签到,获得积分10
27秒前
我是老大应助cure采纳,获得10
27秒前
小马想毕业完成签到,获得积分10
28秒前
今后应助谁家那小谁采纳,获得10
29秒前
ytsa完成签到,获得积分10
30秒前
海人发布了新的文献求助10
31秒前
39秒前
手握灵珠常奋笔完成签到,获得积分10
40秒前
余味应助WFLLL采纳,获得10
44秒前
45秒前
CodeCraft应助科研通管家采纳,获得10
45秒前
TUTU应助科研通管家采纳,获得10
45秒前
45秒前
田様应助科研通管家采纳,获得10
46秒前
46秒前
46秒前
bc应助懵懂的小夏采纳,获得20
48秒前
兜兜揣满糖完成签到 ,获得积分10
49秒前
天真琳发布了新的文献求助10
50秒前
如你所liao完成签到,获得积分10
51秒前
小白应助吴开心采纳,获得10
51秒前
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777749
求助须知:如何正确求助?哪些是违规求助? 3323242
关于积分的说明 10213223
捐赠科研通 3038523
什么是DOI,文献DOI怎么找? 1667522
邀请新用户注册赠送积分活动 798139
科研通“疑难数据库(出版商)”最低求助积分说明 758275