CauSeR

人气 计算机科学 会话(web分析) 因果推理 推论 机器学习 排名(信息检索) 人工智能 推荐系统 过程(计算) 情报检索 数据挖掘 计量经济学 万维网 心理学 经济 操作系统 社会心理学
作者
Priyanka Gupta,Ankit Sharma,Pankaj Malhotra,Lovekesh Vig,Gautam R. Shroff
标识
DOI:10.1145/3459637.3482071
摘要

Recommender Systems (RS) tend to recommend more popular items instead of the relevant long-tail items. Mitigating such popularity bias is crucial to ensure that less popular but relevant items are part of the recommendation list shown to the user. In this work, we study the phenomenon of popularity bias in session-based RS (SRS) obtained via deep learning (DL) models. We observe that DL models trained on the historical user-item interactions in session logs (having long-tailed item-click distributions) tend to amplify popularity bias. To understand the source of this bias amplification, we consider potential sources of bias at two distinct stages in the modeling process: i. the data-generation stage (user-item interactions captured as session logs), ii. the DL model training stage. We highlight that the popularity of an item has a causal effect on i. user-item interactions via conformity bias, as well as ii. item ranking from DL models via biased training process due to class (target item) imbalance. While most existing approaches in literature address only one of these effects, we consider a comprehensive causal inference framework that identifies and mitigates the effects at both stages. Through extensive empirical evaluation on simulated and real-world datasets, we show that our approach improves upon several strong baselines from literature for popularity bias and long-tailed classification. Ablation studies show the advantage of our comprehensive causal analysis to identify and handle bias in data generation as well as training stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助缺缺采纳,获得10
刚刚
刘雪晴完成签到 ,获得积分10
2秒前
吹梦成真发布了新的文献求助10
3秒前
隐形曼青应助kaola采纳,获得10
3秒前
4秒前
WYao发布了新的文献求助10
5秒前
7秒前
yookia应助新羽采纳,获得10
7秒前
Akim应助惜曦采纳,获得10
8秒前
夕沫完成签到,获得积分20
8秒前
美满朝雪发布了新的文献求助10
8秒前
8秒前
怡然的乘风完成签到 ,获得积分10
9秒前
10秒前
似水流年发布了新的文献求助10
10秒前
讨厌的十九岁完成签到,获得积分10
10秒前
11秒前
13秒前
彩色夜山完成签到,获得积分20
13秒前
kaola发布了新的文献求助10
14秒前
14秒前
Geodada完成签到,获得积分10
15秒前
olivia完成签到,获得积分10
15秒前
李小跳完成签到,获得积分10
15秒前
17秒前
美满朝雪完成签到,获得积分10
17秒前
18秒前
舒适的天奇完成签到 ,获得积分10
18秒前
19秒前
研友_ZGRvon完成签到,获得积分0
20秒前
20秒前
20秒前
憨憨医生完成签到,获得积分10
21秒前
高挑的沛蓝完成签到,获得积分10
21秒前
憨憨医生发布了新的文献求助10
24秒前
24秒前
25秒前
25秒前
26秒前
郑盼秋完成签到,获得积分10
28秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Beyond The Sentence: Discourse And Sentential Form 500
求 5G-Advanced NTN空天地一体化技术 pdf版 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4069819
求助须知:如何正确求助?哪些是违规求助? 3608783
关于积分的说明 11457900
捐赠科研通 3329173
什么是DOI,文献DOI怎么找? 1830091
邀请新用户注册赠送积分活动 900107
科研通“疑难数据库(出版商)”最低求助积分说明 819833