多糖
流变学
流变仪
化学
果胶
趾长肌
支化(高分子化学)
粘弹性
植物
食品科学
聚合物
有机化学
生物
材料科学
复合材料
作者
Maria Dimopoulou,Katerina Alba,Ian M. Sims,Vassilis Kontogiorgos
标识
DOI:10.1016/j.carbpol.2021.118540
摘要
Linkage patterns and relaxation dynamics of baobab (Adansonia digitata) polysaccharides have been investigated by means of linkage analysis and rheometry. The fruit polysaccharide was mostly xylogalacturonan, with co-extracted α-glucan. The leaf polysaccharide consists predominantly of two domains, one branched at O-4 of the →2)-Rhap-(1→ residues and another branched at O-3 of the →4)-GalpA-(1→ backbone to single GlcpA-(1→ residues. Master curves of viscoelasticity of fruit polysaccharides manifested strong pH-dependency. At pH below the dissociation constant of galacturonic acid, dispersions showed liquid-like behaviour. In contrast, at neutral pH, a weak gel network formation was observed that destabilised rapidly under the influence of flow fields. The present work identifies xylogalacturonans from baobab fruit as polysaccharides with unique rheological characteristics that may point to new directions in food and pharmaceutical formulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI