Dynamics of Nanoparticle Self-Assembly into Superhydrophobic Liquid Marbles during Water Condensation

聚结(物理) 微尺度化学 纳米颗粒 材料科学 纳米技术 下降(电信) 冷凝 接触角 化学工程 复合材料 物理 天体生物学 计算机科学 电信 数学教育 热力学 数学 工程类
作者
Konrad Rykaczewski,Jeff Chinn,Marlon L. Walker,John Henry J. Scott,Amy M. Chinn,Wanda Jones
出处
期刊:ACS Nano [American Chemical Society]
卷期号:5 (12): 9746-9754 被引量:61
标识
DOI:10.1021/nn203268e
摘要

Nanoparticles adsorbed onto the surface of a drop can fully encapsulate the liquid, creating a robust and durable soft solid with superhydrophobic characteristics referred to as a liquid marble. Artificially created liquid marbles have been studied for about a decade but are already utilized in some hair and skin care products and have numerous other potential applications. These soft solids are usually formed in small quantity by depositing and rolling a drop of liquid on a layer of hydrophobic particles but can also be made in larger quantities in an industrial mixer. In this work, we demonstrate that microscale liquid marbles can also form through self-assembly during water condensation on a superhydrophobic surface covered with a loose layer of hydrophobic nanoparticles. Using in situ environmental scanning electron microscopy and optical microscopy, we study the dynamics of liquid marble formation and evaporation as well as their interaction with condensing water droplets. We demonstrate that the self-assembly of nanoparticle films into three-dimensional liquid marbles is driven by multiple coalescence events between partially covered droplets and is aided by surface flows causing rapid nanoparticle film redistribution. We also show that droplet and liquid marble coalescence can occur due to liquid-to-liquid contact or squeezing of the two objects into each other as a result of compressive forces from surrounding droplets and marbles. Irrelevant of the mechanism, coalescence of marbles and drops can cause their rapid movement across and rolling off the edge of the surface. We also demonstrate that the liquid marbles randomly moving across the surface can be captured and immobilized by hydrophilic surface patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
YANA完成签到,获得积分10
1秒前
可爱的函函应助付ffff采纳,获得30
2秒前
曹苍久完成签到,获得积分10
3秒前
慕青应助机智的凡梦采纳,获得10
3秒前
李爱国应助天真的灵采纳,获得10
3秒前
3秒前
CUI发布了新的文献求助10
4秒前
少一点西红柿完成签到 ,获得积分10
4秒前
Lv发布了新的文献求助10
4秒前
5秒前
科研通AI6应助instant采纳,获得10
5秒前
5秒前
Akim应助夕荀采纳,获得10
6秒前
Jane完成签到,获得积分10
6秒前
hhhpass发布了新的文献求助10
6秒前
Always发布了新的文献求助10
6秒前
小民完成签到,获得积分10
7秒前
柏木了完成签到 ,获得积分10
8秒前
主流二完成签到,获得积分10
8秒前
kirito1211完成签到,获得积分10
9秒前
英姑应助曹苍久采纳,获得10
10秒前
Ava应助Aaa歹歹萌萌采纳,获得10
11秒前
李健应助krain采纳,获得10
11秒前
小民发布了新的文献求助10
12秒前
12秒前
浮游应助cailiaokexue采纳,获得10
13秒前
13秒前
13秒前
踏水追风发布了新的文献求助10
14秒前
完美世界应助Ccccsa采纳,获得10
14秒前
15秒前
15秒前
乾清宫喝奶茶完成签到,获得积分10
15秒前
Lv完成签到,获得积分10
16秒前
17秒前
18秒前
wty完成签到 ,获得积分10
18秒前
Cassiopiea19发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643332
求助须知:如何正确求助?哪些是违规求助? 4761047
关于积分的说明 15020601
捐赠科研通 4801687
什么是DOI,文献DOI怎么找? 2566980
邀请新用户注册赠送积分活动 1524786
关于科研通互助平台的介绍 1484372