Dynamics of Nanoparticle Self-Assembly into Superhydrophobic Liquid Marbles during Water Condensation

聚结(物理) 微尺度化学 纳米颗粒 材料科学 纳米技术 下降(电信) 冷凝 接触角 化学工程 复合材料 数学教育 工程类 物理 热力学 天体生物学 电信 计算机科学 数学
作者
Konrad Rykaczewski,Jeff Chinn,Marlon L. Walker,John Henry J. Scott,Amy M. Chinn,Wanda Jones
出处
期刊:ACS Nano [American Chemical Society]
卷期号:5 (12): 9746-9754 被引量:61
标识
DOI:10.1021/nn203268e
摘要

Nanoparticles adsorbed onto the surface of a drop can fully encapsulate the liquid, creating a robust and durable soft solid with superhydrophobic characteristics referred to as a liquid marble. Artificially created liquid marbles have been studied for about a decade but are already utilized in some hair and skin care products and have numerous other potential applications. These soft solids are usually formed in small quantity by depositing and rolling a drop of liquid on a layer of hydrophobic particles but can also be made in larger quantities in an industrial mixer. In this work, we demonstrate that microscale liquid marbles can also form through self-assembly during water condensation on a superhydrophobic surface covered with a loose layer of hydrophobic nanoparticles. Using in situ environmental scanning electron microscopy and optical microscopy, we study the dynamics of liquid marble formation and evaporation as well as their interaction with condensing water droplets. We demonstrate that the self-assembly of nanoparticle films into three-dimensional liquid marbles is driven by multiple coalescence events between partially covered droplets and is aided by surface flows causing rapid nanoparticle film redistribution. We also show that droplet and liquid marble coalescence can occur due to liquid-to-liquid contact or squeezing of the two objects into each other as a result of compressive forces from surrounding droplets and marbles. Irrelevant of the mechanism, coalescence of marbles and drops can cause their rapid movement across and rolling off the edge of the surface. We also demonstrate that the liquid marbles randomly moving across the surface can be captured and immobilized by hydrophilic surface patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧子完成签到,获得积分10
刚刚
无花果应助凤头哈士葵采纳,获得10
刚刚
1秒前
1秒前
搜集达人应助秀秀采纳,获得10
3秒前
4秒前
犹豫大侠发布了新的文献求助10
4秒前
vippp发布了新的文献求助10
5秒前
啦啦完成签到,获得积分10
5秒前
CR7应助kk采纳,获得20
6秒前
成功上岸完成签到,获得积分20
6秒前
曾峥发布了新的文献求助10
7秒前
7秒前
啦啦发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
共享精神应助Jay采纳,获得10
11秒前
叫我富婆儿完成签到,获得积分10
12秒前
DouBo发布了新的文献求助10
12秒前
shi hui应助陌陌采纳,获得10
12秒前
大气亦巧发布了新的文献求助10
12秒前
浮游应助无心的芸采纳,获得10
13秒前
13秒前
13秒前
乐观小土豆完成签到,获得积分20
13秒前
14秒前
15秒前
行走人生发布了新的文献求助10
15秒前
万能图书馆应助如如采纳,获得10
15秒前
吴雨涛完成签到,获得积分10
15秒前
潘忠旭完成签到,获得积分10
15秒前
15秒前
可爱小张发布了新的文献求助10
16秒前
orangevv发布了新的文献求助10
16秒前
擦撒擦擦完成签到,获得积分10
17秒前
无花果应助allenise采纳,获得10
17秒前
科研通AI2S应助啦啦采纳,获得10
17秒前
18秒前
秀秀发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299586
求助须知:如何正确求助?哪些是违规求助? 4447698
关于积分的说明 13843511
捐赠科研通 4333326
什么是DOI,文献DOI怎么找? 2378747
邀请新用户注册赠送积分活动 1374030
关于科研通互助平台的介绍 1339544