已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluation of endometrial receptivity by ultrasound elastography to predict pregnancy outcome is a non-invasive and worthwhile method

逻辑回归 超声波 子宫内膜 医学 接收机工作特性 体质指数 妇科 产科 放射科 内科学
作者
Meiling Li,Xianjun Zhu,Liping Wang,Haiyan Fu,Zhao Wei,Chen Zhou,Li Chen,Bing Yao
出处
期刊:Biotechnology & Genetic Engineering Reviews [Taylor & Francis]
卷期号:: 1-15 被引量:6
标识
DOI:10.1080/02648725.2023.2183585
摘要

Up to today, there is no effective, specific and non-invasive evaluation method to assess the endometrial receptivity. This study aimed to establish a non-invasive and effective model with the clinical indicators to evaluate endometrial receptivity. Ultrasound elastography can reflect the overall state of the endometrium. Ultrasonic elastography images from 78 hormonally prepared frozen embryo transfer (FET) patients were assessed in this study. Meanwhile, the clinical indicators reflecting endometrium in the transplantation cycle were collected. The patients were received to transfer only one high-quality blastocyst. A novel code rule that can generate a large number of 0-1 symbols was designed to collect data on different factors. At the same time, a logistic regression model of the machine learning process with an automatic combination of factors was designed for analysis. The logistic regression model was based on age, body mass index, waist-hip ratio, endometrial thickness, perfusion index (PI), resistance index (RI), elastic grade, elastic ratio cutoff value, serum estradiol level and 9 other indicators. The accuracy rate of predicting pregnancy outcome of the logistic regression model was 76.92%. Elastic ultrasound can reflect the endometrial receptivity of patients in FET cycles. We established a prediction model including ultrasound elastography and the model precisely predicted the pregnancy outcome. The predictive accuracy of endometrial receptivity by the predictive model is significantly higher than that of the single clinical indicator. The prediction model by integrating the clinical indicators to evaluate endometrial receptivity may be a non-invasive and worthwhile method for evaluating endometrial receptivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晨曦微露完成签到,获得积分10
刚刚
1秒前
7秒前
风清扬应助li199624采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
Rainbow0224应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
10秒前
Rainbow0224应助科研通管家采纳,获得10
10秒前
桐桐应助蘇q采纳,获得10
11秒前
我是老大应助Zo采纳,获得30
12秒前
FashionBoy应助betsydouglas14采纳,获得10
14秒前
11_345086完成签到,获得积分10
15秒前
17秒前
17秒前
18秒前
Orange应助张靖采纳,获得30
18秒前
22秒前
22秒前
传奇3应助黑桃Q采纳,获得10
23秒前
Ava应助魔王采纳,获得10
23秒前
23秒前
李爱国应助Nana1000采纳,获得10
24秒前
大魔王发布了新的文献求助10
25秒前
坤坤发布了新的文献求助10
26秒前
清脆摩托发布了新的文献求助10
26秒前
蘇q发布了新的文献求助10
27秒前
28秒前
勤恳的钻石发布了新的文献求助100
29秒前
30秒前
31秒前
iNk应助坤坤采纳,获得20
31秒前
31秒前
大魔王完成签到,获得积分10
32秒前
黑桃Q发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4805224
求助须知:如何正确求助?哪些是违规求助? 4121284
关于积分的说明 12751526
捐赠科研通 3854727
什么是DOI,文献DOI怎么找? 2122748
邀请新用户注册赠送积分活动 1144943
关于科研通互助平台的介绍 1036240