Deep learning for pancreatic diseases based on endoscopic ultrasound: A systematic review

人工智能 可解释性 内镜超声 检查表 计算机科学 卷积神经网络 分割 医学 预处理器 任务(项目管理) 机器学习 系统回顾 梅德林 医学物理学 放射科 心理学 法学 管理 认知心理学 经济 政治学
作者
Minyue Yin,Lu Liu,Jingwen Gao,Jiaxi Lin,Shuting Qu,Wei Xu,Xiaolin Liu,Chun‐Fang Xu,Jinzhou Zhu
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:174: 105044-105044 被引量:9
标识
DOI:10.1016/j.ijmedinf.2023.105044
摘要

Endoscopic ultrasonography (EUS) is one of the main examinations in pancreatic diseases. A series of the studies reported the application of deep learning (DL)-assisted EUS in the diagnosis of pancreatic diseases. This systematic review is to evaluate the role of DL algorithms in assisting EUS diagnosis of pancreatic diseases. Literature search were conducted in PubMed and Semantic Scholar databases. Studies that developed DL models for pancreatic diseases based on EUS were eligible for inclusion. This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and quality assessment of the included studies was performed according to the IJMEDI checklist. A total of 23 studies were enrolled into this systematic review, which could be categorized into three groups according to computer vision tasks: classification, detection and segmentation. Seventeen studies focused on the classification task, among which five studies developed simple neural network (NN) models while twelve studies constructed convolutional NN (CNN) models. Three studies were concerned the detection task and five studies were the segmentation task, all based on CNN architectures. All models presented in the studies performed well based on EUS images, videos or voice. According to the IJMEDI checklist, six studies were recognized as high-grade quality, with scores beyond 35 points. DL algorithms show great potential in EUS images/videos/voice for pancreatic diseases. However, there is room for improvement such as sample sizes, multi-center cooperation, data preprocessing, model interpretability, and code sharing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黑鲨完成签到 ,获得积分10
12秒前
迷人面包完成签到,获得积分10
14秒前
Aimee完成签到 ,获得积分10
16秒前
mark33442完成签到,获得积分10
17秒前
ferritin完成签到 ,获得积分10
20秒前
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
cdercder应助科研通管家采纳,获得10
27秒前
cdercder应助科研通管家采纳,获得10
27秒前
Pretrial完成签到 ,获得积分10
40秒前
睡觉王完成签到 ,获得积分10
46秒前
fabius0351完成签到 ,获得积分10
49秒前
ananan完成签到 ,获得积分10
52秒前
yk完成签到 ,获得积分10
55秒前
doreen完成签到 ,获得积分10
1分钟前
洸彦完成签到 ,获得积分10
1分钟前
chenpaul1983发布了新的文献求助30
1分钟前
1分钟前
ooa4321完成签到,获得积分10
1分钟前
Nick完成签到 ,获得积分10
1分钟前
十年完成签到 ,获得积分10
1分钟前
阿琪完成签到,获得积分10
1分钟前
忧虑的静柏完成签到 ,获得积分10
1分钟前
cdercder应助wjy采纳,获得10
1分钟前
顺利毕业完成签到 ,获得积分10
1分钟前
1分钟前
离线完成签到 ,获得积分10
1分钟前
GSQ完成签到,获得积分20
1分钟前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
1分钟前
chenpaul1983完成签到,获得积分10
1分钟前
xy完成签到 ,获得积分10
2分钟前
田様应助周小鱼采纳,获得10
2分钟前
JJ完成签到 ,获得积分10
2分钟前
墨扬完成签到,获得积分10
2分钟前
Dong完成签到 ,获得积分10
2分钟前
2分钟前
滕皓轩发布了新的文献求助30
2分钟前
xiaosui完成签到 ,获得积分10
2分钟前
周全完成签到 ,获得积分10
2分钟前
周小鱼发布了新的文献求助10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777682
求助须知:如何正确求助?哪些是违规求助? 3323099
关于积分的说明 10213003
捐赠科研通 3038447
什么是DOI,文献DOI怎么找? 1667382
邀请新用户注册赠送积分活动 798115
科研通“疑难数据库(出版商)”最低求助积分说明 758273