EZH2型
癌症研究
加压器
表观遗传学
生物
PRC2
增强子
组蛋白甲基转移酶
融合基因
淋巴瘤
融合蛋白
转基因
抑制因子
基因
遗传学
转录因子
免疫学
重组DNA
作者
Gongwei Wu,Noriaki Yoshida,Jihe Liu,Xiaoyang Zhang,Yuan Xiong,Tayla B. Heavican‐Foral,Elisa Mandato,Huiyun Liu,Geoffrey M. Nelson,Lu Yang,Renee Chen,Katherine A. Donovan,M. Jones,Mikhail Roshal,Yanming Zhang,Ran Xu,Ajit J. Nirmal,Salvia Jain,Catharine Leahy,Kristen L. Jones
标识
DOI:10.1126/scitranslmed.adi7244
摘要
Gene fusions involving tumor protein p63 gene (TP63) occur in multiple T and B cell lymphomas and portend a dismal prognosis for patients. The function and mechanisms of TP63 fusions remain unclear, and there is no target therapy for patients with lymphoma harboring TP63 fusions. Here, we show that TP63 fusions act as bona fide oncogenes and are essential for fusion-positive lymphomas. Transgenic mice expressing TBL1XR1::TP63, the most common TP63 fusion, develop diverse lymphomas that recapitulate multiple human T and B cell lymphomas. Here, we identify that TP63 fusions coordinate the recruitment of two epigenetic modifying complexes, the nuclear receptor corepressor (NCoR)—histone deacetylase 3 (HDAC3) by the N-terminal TP63 fusion partner and the lysine methyltransferase 2D (KMT2D) by the C-terminal TP63 component, which are both required for fusion-dependent survival. TBL1XR1::TP63 localization at enhancers drives a unique cell state that involves up-regulation of MYC and the polycomb repressor complex 2 (PRC2) components EED and EZH2. Inhibiting EZH2 with the therapeutic agent valemetostat is highly effective at treating transgenic lymphoma murine models, xenografts, and patient-derived xenografts harboring TP63 fusions. One patient with TP63 -rearranged lymphoma showed a rapid response to valemetostat treatment. In summary, TP63 fusions link partner components that, together, coordinate multiple epigenetic complexes, resulting in therapeutic vulnerability to EZH2 inhibition.
科研通智能强力驱动
Strongly Powered by AbleSci AI