压电
传感器
声学
电阻抗
PMUT公司
球壳
材料科学
超声波传感器
振动
电介质
壳体(结构)
物理
工程类
电气工程
光电子学
复合材料
摘要
As a critical component of ultrasonic vibration systems, piezoelectric transducers play an essential role in various practical application scenarios. Recent advances in spherical transducers have been widely used in underwater sound and structural health monitoring, while the cascaded spherical piezoelectric transducer with arbitrary piezoceramic shell thickness has not been investigated. Here, we propose a radially cascaded spherical piezoelectric transducer (RCSPT) and derive its electromechanical equivalent circuit with mechanical losses, dielectric losses, and load mechanical impedances. The resulting device is composed of three concentric spherical metal shells and two radially polarized spherical piezoceramic shells. The underlying physical mechanism is the inverse piezoelectric effect, which converts electrical signals into mechanical vibrations. The effects of the spherical piezoceramic shell's thickness and location on the RCSPT are studied. We also analyze the effects of mechanical losses, dielectric losses, and load mechanical impedances on the modulus of input electric impedance of the cascaded spherical transducer. The experiments are conducted to verify the electromechanical characteristics of the resulting device, which are in good agreement with the simulated results and theoretical predictions. Our methodology will offer new possibilities for designing RCSPTs and may promote applications in various fields, such as underwater acoustic detection and structural health monitoring.
科研通智能强力驱动
Strongly Powered by AbleSci AI