多路复用器
计算机科学
加速
卷积神经网络
计算
人工智能
算法
并行计算
多路复用
电信
作者
Yuyang Li,Yejoong Kim,Inhee Lee
标识
DOI:10.1109/tvlsi.2023.3324572
摘要
This brief presents an energy-efficient accelerator for convolutional neural network (CNN) layer computations in a compact system. The accelerator replaces traditional data shift registers with a multiplexer-based barrel shifter, offering greater flexibility for supporting various models and reducing power consumption by 56.2% compared to flip-flop-based shifters. The prototype, fabricated using a 180-nm CMOS process, accelerates CIFAR-10 dataset CNN computations by 8.5 times compared to a system without the accelerator. It achieves this speedup while consuming only $4.7 ~\mu \text{W}$ of power and $9.53 ~\mu \text{J}$ for each inference task.
科研通智能强力驱动
Strongly Powered by AbleSci AI