Comparative Study of Global Sensitivity Analysis and Local Sensitivity Analysis in Power System Parameter Identification

灵敏度(控制系统) 鉴定(生物学) 计算机科学 工程类 生物 植物 电子工程
作者
Chuan Qin,Yuqing Jin,Meng Tian,Ping Ju,Shengde Zhou
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:16 (16): 5915-5915 被引量:1
标识
DOI:10.3390/en16165915
摘要

In the process of parameter identification, sensitivity analysis is mainly used to determine key parameters with high sensitivity in the model. Sensitivity analysis methods include local sensitivity analysis (LSA) and global sensitivity analysis (GSA). The LSA method has been widely used for power system parameter identification for a long time, while the GSA has started to be used in recent years. However, there is no clear conclusion on the impact of different sensitivity analysis methods on parameter identification results. Therefore, this paper compares and studies the roles that LSA and GSA can play in different parameter identification methods, providing clear guidance for the selection of sensitivity analysis methods and parameter identification methods. The conclusion is as follows. If the identification strategy that only identifies key parameters with high sensitivity is adopted, we recommend still using the existing LSA method. If using a groupwise alternating identification strategy (GAIS) for high- and low-sensitivity parameters, either LSA or GSA can be used. To improve the identification accuracy, it is more important to improve the identification strategy than to change the sensitivity analysis method. When the accuracy of the non-key parameters with low sensitivity cannot be confirmed, using the GAIS is an effective method for ensuring identification accuracy. In addition, it should be noted that the high sensitivity of a parameter does not necessarily mean that the parameter is identifiable, which is revealed by the examples used in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo完成签到,获得积分10
刚刚
Leeon完成签到,获得积分10
1秒前
2秒前
凯蒂完成签到,获得积分10
2秒前
5秒前
李爱国应助聪慧的凝海采纳,获得10
7秒前
可爱丸子完成签到,获得积分10
10秒前
11秒前
eurus发布了新的文献求助10
11秒前
zhentg完成签到,获得积分10
12秒前
14秒前
99giddens发布了新的文献求助50
14秒前
上官若男应助甜甜戎采纳,获得10
14秒前
xiaoyiyaxin完成签到 ,获得积分10
17秒前
ddl7完成签到,获得积分10
17秒前
科研通AI5应助Maomao采纳,获得10
18秒前
Owen应助eurus采纳,获得10
19秒前
JamesPei应助柯一一采纳,获得10
20秒前
勤劳善良的胖蜜蜂完成签到 ,获得积分10
22秒前
科研通AI5应助qinxintang采纳,获得10
24秒前
科研通AI5应助自信猕猴桃采纳,获得10
25秒前
25秒前
26秒前
29秒前
GG发布了新的文献求助10
29秒前
29秒前
高高菠萝完成签到 ,获得积分10
29秒前
29秒前
ddd完成签到 ,获得积分10
29秒前
和风发布了新的文献求助10
30秒前
叉叉茶完成签到 ,获得积分10
30秒前
31秒前
32秒前
顾矜应助菠萝采纳,获得10
32秒前
xx完成签到,获得积分10
32秒前
33秒前
奂锐123发布了新的文献求助10
33秒前
RIYUCE发布了新的文献求助10
33秒前
33秒前
33秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801432
求助须知:如何正确求助?哪些是违规求助? 3347164
关于积分的说明 10332162
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681720
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852