粒度
分子动力学
力场(虚构)
统计物理学
计算机科学
粒子群优化
可见的
一致性(知识库)
材料科学
聚苯乙烯
生物系统
聚合物
物理
人工智能
算法
复合材料
量子力学
生物
操作系统
作者
Jiaxian Zhang,Hongxia Guo
标识
DOI:10.1002/marc.202500558
摘要
ABSTRACT Coarse‐grained (CG) molecular dynamics offers a powerful means to bridge atomistic simulations and macroscopic experiments, but constructing CG models that simultaneously preserve structural, thermodynamic, and dynamical consistency remains challenging. Here, we present a machine learning‐assisted, multi‐objective parameterization strategy for atactic polystyrene (PS) based on a 2:1 mapping scheme. By integrating Support Vector Regression (SVR) and Particle Swarm Optimization (PSO), we systematically optimize Lennard‐Jones parameters to reproduce atomistic‐level radial distribution functions, density, cohesive energy density, and self‐diffusion coefficients at 600 and 1 . Notably, the inclusion of the diffusion coefficient as an optimization target enables the construction of a dynamically consistent CG model. The resulting CG force field achieves remarkable agreement with all‐atom (AA) simulations across multiple observables, establishing a robust framework for predictive polymer modeling. This methodology provides a framework that could be extended to materials discovery and rational polymer design in future studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI